卫星通信带宽
vsat卫星系统。可以提供1M起的带宽。
㈡ Milstar军事卫星通信系统是怎样组成的
原计划Milstar星座由8颗卫星组成,5颗在赤道上空,其中一颗是在轨道上的备用卫星,其余卫星在极区覆盖范围较高或较低的纬度上。但是由于美国各界对原计划有异议,1990年美国防部建议削减卫星的数目,1994年制定了6颗Milstar卫星的计划。Milstar卫星通信系统采用EHF频段,其上行链路为44GHz,下行链路为20GHz,带宽可达2GHz。EHF频段和UHF频段相比,具有全球覆盖范围大、无线电静区少等特点;加之它具有卫星到卫星的星际间链路,因而缩短了通信距离;并且其频率高,频带宽,抗干扰抗截获性能好;它还具有天线小等优点。
卫星上采用多样化天线,可进一步提高抗干扰能力。一种是采用高增益万向锐方向性射束天线和发射轮廓分明的点波束,可对海上特遣部队特殊地域的作战,提供良好通信,而且由于天线的高增益使采用最小终端成为可能;还有一种是采用快扫描多波束阵列天线,可用于全球范围的高增益、低副瓣的抗干扰通信,该天线使用天线调零技术,可在敌人于扰方向上使波束置零,从而进一步增强在干扰环境中的抗干扰能力。
星上具有平台处理机,对接收到的每一信道信号进行解扩、解调和译码,重新发射之前再进行以上反过程后,发射给地面终端。星上有整套计算机采用“先申请先进人”方式自动控制多通道通信资源而不用地面网络控制站执行。
整个通信系统的定时以星群的原子标准时钟为准,为了保证网络中新登记的终端同步,卫星提供探测响应。星上还有任务控制单元,采用了人工智能技术,可通过自备冗余控制进行再组合,自身修理,即使地面任务控制站被摧毁,卫星在无地面介入下,仍能正常工作约6个月。
星上贮有大量推进燃料,遭受攻击时,可机动变轨。在转发器中开辟1.544Mb/s的中速数据率(MDR)信道,与低速数据率(LDR,75b/s~2.4kb/s)并存,MDR信道传送一份标准战区空战命令不到7min,把巡航导弹目标修正数据发给战舰不到10s,这对于抓紧作战时机非常有利。
星际间采用60GHz频段进行星际通信,不必采用多跳或经地面中继的方式,这种方式容易受到敌人攻击。采用两种多址技术,上行链路用频分多址和全频带跳频,下行链路用时分多址和快速跳频。卫星传输的信息均经过加密,同时采用先进的纠错技术,即使近半数比特被干扰或丢失,纠错码仍能使信息复原。每个卫星可能有50条EHF信道和4条SHF信道。
关于该卫星系统的地面部分,在Milstar卫星通信系统联合终端设备计划办公室领导下,海、陆、空各军种设计和开发了一系列既能抗毁,又具有互通能力的终端设备。美国海军计划的Milstar地面终端用来补充和代替UHF设备,将采用AN/USC-38(V)终端,可在中速数据率工作,根据实际应用情况配置不同直径的天线,如1.8m用于岸站,87cm用于舰站,14cm天线装在潜艇的潜望镜上等。至于终端中的关键性部件,其中包括天线馈电线、指北罗盘、铷频率基准时钟、同步器以及5W和10W的固态功率放大器等,部队要求各承包厂家进行备份配置。
㈢ 卫星通信的频段同步卫星通信业务简介
频段同步卫星通信业务有卫星固定通信业务(FSS)和星移动通信业务(MSS)之分,它们所分配的频段也不同。FSS使用C频段和Ku频段。MSS使用L频段(见同步卫星移动通信),工作在Ku频段的Ku转发器原来大多是点波束的,90年代开始国际通信卫星组织(INTELSAT,简作IS)的Ku星叫ISK,提供较广的区域波束以适应需求。FSS的C、Ku频段的频率划分如下(上行为地球站对卫星所用频率,下行为卫星对地球站所用频率)。
①C频段(MHz)
上行5925~6425 带宽500MHz
下行3700~4200 带宽500MHz
为扩展FSS用的频谱,自1984年1月1日开始调整为:
上行:第1区5725~7075 带宽1350MHz
第2、3区5850~7075 带宽1225MHz
3400~4200 带宽共
下行:第1、2、3区
4500~4800 l100MHz
②Ku频段(GHz)
上行:第1、2、3区 14.0~14.25 带宽250MHz
14.25~14.5 带宽250MHz
下行:第1、2、3区 10.95~11.20 带宽250MHz
11.45~11.7 带宽250MHz
第2区 11.7~11.95 带宽250MHz
11.95~12.2 带宽250MHz
第3区 12.2~12.5 带宽300MHz
第1、3区 12.5~12.75 带宽250MHz
根据1992年国际无线电行政大会(WARC—92)的频率分配,国际通信卫星组织于2000年1月1日可启用新分配的13.75~14.0GHz(上行),带宽250MHz,以适应发展的需要。
C频段的传输比较稳定,设备技术也成熟,但容易和同频段的地面微波系统相互干扰。卫星通信的上行链路干扰6GHz微波系统,下行链路受4GHz微波系统的干扰,这需预先协调并采取相应的屏蔽措施加以解决(见卫星通信系统干扰协调),Ku频段传输受雨雾衰减较大,不如C频段稳定,尤其雨量大的地区更是如此。如在上、下行链路的计算中留有足够余量,配备上行功率调节功能,亦可获得满意效果。Ku频段频谱资源较丰富,与地面微波系统的相互干扰小,其应用很有前途。
20世纪末或21世纪初,C和Ku频段将出现拥挤,FSS将在20GHz~30GHz的Ka频段开发业务,其频率为:
上行(GHz) 29.5~30 带宽500MHz
下行(GHz) 19.7~20.2 带宽500MHz
㈣ 卫星通信有哪几个窗口频段为什么说一般选在1-10ghz范围内较为适宜
长波和中波都是沿地面、水面传播的,信号稳定,传输距离较远,一般几千公里,带内宽一般在9-容10千赫,实际音频带宽在5千赫左右,音质一般。 微波由地面和电离层反射传播,传输距离很远,可达几万公里,但信号易受大气干扰,信号不稳定,带宽小,音...
㈤ 卫星通信频带宽的好处
所谓高速传输数据,就是在单位时间内传输的数据量大。基于现在的认知,可以定义:大于2Mbps的数据传输为高速数据传输。
数据传输的相关参数有:数据速率Rd,调制阶数N,符号速率Rs,传输带宽Bw,发射功率Pt,解调门限等等。如果其他参数不便,那么传输数据率越高,就需要越宽的带宽。但是,如果在增加数据率的同时,等比例提高调制阶数(需要更高的发射功率,以满足接收端的解调门限要求),就不需要增加传输带宽。
建议你看看维特比的论著。
㈥ 卫星通信和超短波通信 哪个速率快一点
你好:
因为卫星通信采用的频率为:L/S/C/Ku/Ka等,主要在5-30GHz;而超短波基本上在300MHz。
一个简单的道理,通信中采用的载波频率越高,其带宽就越大!所以,卫星通信比超短波通信具有更高的带宽,能传输跟多的内容。即 速率更快!
不知道这样的回答你是否满意?
祝好!
Bob