光纤通信概述
① 现代通信技术的概述
通信技术和通信产业20世纪80年代以来发展最快的领域之一。不论是在国际还是在国内都是如此。这是人类进入信息社会的重要标志之一。通信就是互通信息。从这个意义上来说,通信在远古的时代就已存在。人之间的对话是通信,用手势表达情绪也可算是通信。以后用烽火传递战事情况是通信,快马与驿站传送文件当然也可是通信。现代的通信一般是指电信,国际上称为远程通信。
纵观通信的发展分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电通信阶段。1837年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。而现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。
数字通信即传输数字信号的通信,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。数字通信以其抗干扰能力强,便于存储,处理和交换等特点,已经成为现代通信网中的最主要的通信技术基础,广泛应用于现代通信网的各种通信系统。程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。程控交换最初是由电话交换技术发展而来,由当初电话交换的人工转接,自动转接、电子转接、程控转接技术,到后来,由于通信业务范围的不断扩大,交换的技术已经不仅仅用于电话交换,还能实现传真,数据,图像通信等交换。程控数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,便于改变交换机功能,便于建设智能网,向用户提供更多,更方便的电话服务。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向基于分组的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。
信息传输技术主要包括光纤通信,数字微波通信,卫星通信,移动通信以及图像通信。
光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。
数字微波中继通信是指利用波长为1m~1mm范围内的电磁波通过中继站传输信号的一种通信方式。其主要特点为信号可以"再生";便于数字程控交换机的连接;便于采用大规模集成电路;保密性好;数字微波系统占用频带较宽等的优点,因此,虽然数字微波通信只有二十多年的历史,却与光纤通信,卫星通信一起被国际公认为最有发展前途的三大传输手段。
卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是: 通信距离远,而投资费用和通信距离无关; 工作频带宽,通信容量大,适用于多种业务的传输;通信线路稳定可靠;通信质量高等优点。
早期的通信形式属于固定点之间的通信,随着人类社会的发展,信息传递日益频繁,移动通信正是因为具有信息交流灵活,经济效益明显等优势,得到了迅速的发展,所谓移动通信,就是在运动中实现的通信。其最大的优点是可以在移动的时候进行通信,方便,灵活。移动通信系统主要有数字移动通信系统(GSM),码多分址蜂窝移动通信系统(CDMA)。
对于通信网,主要分为电话网,支撑网和智能网。电话网是进行交互型话音通信,开放电话业务的电信网;一个完整的电信网除了有以传递信息为主的业务网外,还需要有若干个用以保障业务网正常运行,增强网络功能,提高网络服务质量的支撑网络,这就是支撑网,支撑网主要包括No。7信令网,数字同步网和电信管理网。而智能网是在原有的网络基础上,为快速,方便,经济,灵活的生成和实现各种电信新业务而建立的附加网络结构。
在通信领域,信息一般可以分为话音,数据和图像三大类型。数据是具有某种含义的数字信号的组合,如字母,数字和符号等,传输时这些字母,数字和符号用离散的数字信号逐一表达出来,数据通信就是将这样的数据信号夹道数据传输信道上传输,到达接收地点后再正确地恢复出原始发送的数据信息的一种通信方式。其主要特点是:人—机或机—机通信,计算机直接参与通信是数据通信的重要特征;传输的准确性和可靠性要求高;传输速率高;通信持续时间差异大等。而数据通信网是一个由分布在各地数据终端设备,数据交换设备和数据传输链路所构成的网络,在通信协议的支持下完成数据终端之间的数据传输与数据交换。
数据网是计算机技术与近代通信技术发展相结合的产物,它是信息采集,传送,存储及处理融为一体,并朝着更高级的综合体发展。纵观通信技术的发展,虽然只有短短的一百多年的历史,却发生了翻天覆地的变化,由当初的人工转接到后来的电路转接、程控交换,分组交换,还有可以作为未来分组化核心网用的ATM交换机,IP路由器;由单一的固定电话到卫星电话,移动电话,IP电话等等,以及由通信和计算机结合的各种其他业务,第三代通信技术的即将上市,以及以后的第四代通信,随着通信技术的发展,人类社会已经逐渐步入信息化的社会。
② 光纤有哪些分类写出各自特点
光纤分为 单模 多模
光纤跳线接口的种类及适用范围
光纤跳线的分类和概述如下:
光纤跳线(又称光纤连接器),也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。SFP模块接LC光纤连接器,而GBIC接的是SC光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明:
①FC型光纤跳线:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多)
②SC型光纤跳线:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多)
③ST型光纤跳线:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架)
④LC型光纤跳线:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用)
⑤MT-RJ型光纤跳线:收发一体的方形光纤连接器,一头双纤收发一体
ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。MTRJ型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。
光纤模块:一般都支持热插拔,GBIC使用的光纤接口多为SC或ST型;SFP,即:小型封装GBIC,使用的光纤为LC型。
使用的光纤:
单模:L波长1310单模长距LH波长1310,1550
多模:SM波长850
SX/LH表示可以使用单模或多模光纤
在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下
1“/”前面部分表示尾纤的连接器型号
“SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头
“LC”接头与SC接头形状相似,较SC接头小一些。
“FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。
连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,
2.'/'后面表明光纤接头截面工艺,即研磨方式
“PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。
“UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。
另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。
由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。
使用范围:
A:光纤通信系统
B:光纤宽带接入网
C:光纤CATV
D:局域网LAN
E:光纤仪器表
F:光纤传感器
G:光纤教据传输系统
H:测试设备
光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上
作一归纳的,兹将各种分类举例如下。
(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、
1.55pm)。
(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、
凹陷型等)。
(3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。
(4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、
红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料
等。
(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有
管律法(Rod intube)和双坩锅法等。
二, 石英光纤
是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的
折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛
应用于有线电视和通信系统。
掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为
1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO
炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,
瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动
因素的掺杂物,以少为佳。
氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺
氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且
损耗也接近理论的最低值。所以多用于长距离的光信号传输。
石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红
外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。
三, 红外光纤
作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,
也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。
红外光纤(Infrared Optical Fiber)主要用于光能传送。例如有:温度计量、
热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。
四, 复台光纤
复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、
氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成
分玻璃比石英的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤
内窥镜。
五, 氟化物光纤
氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。这种光纤原料又
简称 ZBLAN(即将氟化铝(ZrF4)、氰化钡(BaF2)、氟化镧(LaF3)、氟化铝
(A1F2)、氰化钠(NaF)等氯化物玻璃原料简化成的缩语。主要工作在2~ 10pm
波长的光传输业务。
由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可
行性开发,例如:其理论上的最低损耗,在3pm波长时可达10-2~10-3dB/km,而
石英光纤在1.55pm时却在0.15~0.16dB/Km之间。
目前,ZBLAN光纤由于难于降低散射损耗,只能用在2.4~2.7pm的温敏器和热
图像传输,尚未广泛实用。
最近,为了利用ZBLAN进行长距离传输,正在研制1.3pm的掺错光纤放大器(PD
FA)。
六, 塑包光纤
塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射
率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。它与石英光纤相比较,具有
纤芯租、数值孔径(NA)高的特点。因此,易与发光二极管LED光源结合,损耗也
较小。所以,非常适用于局域网(LAN)和近距离通信。
七, 塑料光纤
这是将纤芯和包层都用塑料(聚合物)作成的光纤。早期产品主要用于装饰和
导光照明及近距离光键路的光通信中。
原料主要是有机玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。损耗受到
塑料固有的C-H结合结构制约,一般每km可达几十dB。为了降低损耗正在开发应用
氟索系列塑料。由于塑料光纤(Plastic Optical fiber)的纤芯直径为1000pm,
比单模石英光纤大100倍,接续简单,而且易于弯曲施工容易。近年来,加上宽带化
的进度,作为渐变型(GI)折射率的多模塑料光纤的发展受到了社会的重视。最近,
在汽车内部LAN中应用较快,未来在家庭LAN中也可能得到应用。
八, 单模光纤
这是指在工作波长中,只能传输一个传播模式的光纤,通常简称为单模光纤
(SMF:Single ModeFiber)。目前,在有线电视和光通信中,是应用最广泛的光纤。
由于,光纤的纤芯很细(约10pm)而且折射率呈阶跃状分布,当归一化频率V参
数<2.4时,理论上,只能形成单模传输。另外,SMF没有多模色散,不仅传输频带
较多模光纤更宽,再加上SMF的材料色散和结构色散的相加抵消,其合成特性恰好形
成零色散的特性,使传输频带更加拓宽。
SMF中,因掺杂物不同与制造方式的差别有许多类型。凹陷型包层光纤(DePr-
essed Clad Fiber),其包层形成两重结构,邻近纤芯的包层,较外倒包层的折射
率还低。另外,有匹配型包层光纤,其包层折射率呈均匀分布。
九, 多模光纤
将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤(MMF:
MUlti ModeFiber)。纤芯直径为50pm,由于传输模式可达几百个,与SMF相比传输
带宽主要受模式色散支配。在历史上曾用于有线电视和通信系统的短距离传输。自
从出现SMF光纤后,似乎形成历史产品。但实际上,由于MMF较SMF的芯径大且与LED
等光源结合容易,在众多LAN中更有优势。所以,在短距离通信领域中MMF仍在重新
受到重视。
MMF按折射率分布进行分类时,有:渐变(GI)型和阶跃(SI)型两种。GI型
的折射率以纤芯中心为最高,沿向包层徐徐降低。从几何光学角度来看,在纤芯中
前进的光束呈现以蛇行状传播。由于,光的各个路径所需时间大致相同。所以,传
输容量较SI型大。
SI型MMF光纤的折射率分布,纤芯折射率的分布是相同的,但与包层的界面呈
阶梯状。由于SI型光波在光纤中的反射前进过程中,产生各个光路径的时差,致使
射出光波失真,色激较大。其结果是传输带宽变窄,目前SI型MMF应用较少。
十, 色散使移光纤
单模光纤的工作波长在1.3Pm时,模场直径约9Pm,其传输损耗约0.3dB/km。
此时,零色散波长恰好在1.3pm处。
石英光纤中,从原材料上看1.55pm段的传输损耗最小(约0.2dB/km)。由于
现在已经实用的掺铒光纤放大器(EDFA)是工作在1.55pm波段的,如果在此波段也
能实现零色散,就更有利于应用1.55Pm波段的长距离传输。
于是,巧妙地利用光纤材料中的石英材料色散与纤芯结构色散的合成抵消特性,
就可使原在1.3Pm段的零色散,移位到1.55pm段也构成零色散。因此,被命名为色
散位移光纤(DSF:DispersionShifted Fiber)。
加大结构色散的方法,主要是在纤芯的折射率分布性能进行改善。
在光通信的长距离传输中,光纤色散为零是重要的,但不是唯一的。其它性能
还有损耗小、接续容易、成缆化或工作中的特性变化小(包括弯曲、拉伸和环境变
化影响)。DSF就是在设计中,综合考虑这些因素。
十一 色散平坦光纤
色散移位光纤(DSF)是将单模光纤设计零色散位于1.55pm波段的光纤。而色
散平坦光纤(DFF:Dispersion Flattened Fiber)却是将从1.3Pm到1.55pm的较
宽波段的色散,都能作到很低,几乎达到零色散的光纤称作DFF。由于DFF要作到
1.3pm~1.55pm范围的色散都减少。就需要对光纤的折射率分布进行复杂的设计。
不过这种光纤对于波分复用(WDM)的线路却是很适宜的。由于DFF光纤的工艺比较
复杂,费用较贵。今后随着产量的增加,价格也会降低。
十二 色散补偿光纤
对于采用单模光纤的干线系统,由于多数是利用1.3pm波段色散为零的光纤构
成的。可是,现在损耗最小的1.55pm,由于EDFA的实用化,如果能在1.3pm零色散
的光纤上也能令1.55pm波长工作,将是非常有益的。
因为,在1.3Pm零色散的光纤中,1.55Pm波段的色散约有16ps/km/nm之多。
如果在此光纤线路中,插入一段与此色散符号相反的光纤,就可使整个光线路的
色散为零。为此目的所用的是光纤则称作色散补偿光纤(DCF:DisPersion Compe-
nsation Fiber)。
DCF与标准的1.3pm零色散光纤相比,纤芯直径更细,而且折射率差也较大。
DCF也是WDM光线路的重要组成部分。
十三 偏派保持光纤
在光纤中传播的光波,因为具有电磁波的性质,所以,除了基本的光波单一
模式之外,实质上还存在着电磁场(TE、TM)分布的两个正交模式。通常,由于
光纤截面的结构是圆对称的,这两个偏振模式的传播常数相等,两束偏振光互不
干涉。但实际上,光纤不是完全地圆对称,例如有着弯曲部分,就会出现两个偏
振模式之间的结合因素,在光轴上呈不规则分布。偏振光的这种变化造成的色散,
称之偏振模式色散(PMD)。对于现在以分配图像为主的有线电视,影响尚不太大。
但对于一些未来超宽带有特殊要求的业务,如:①相干通信中采用外差检波,要
求光波偏振更稳定时;②光机器等对输入输出特性要求与偏振相关时;③在制作
偏振保持光耦合器和偏振器或去偏振器等时;④制作利用光干涉的光纤敏感器等,
凡要求偏振波保持恒定的情况下,对光纤经过改进使偏振状态不变的光纤称作偏
振保持光纤(PMF:Polarization Maintaining fiber),也有称此为固定偏振
光纤的。
十四 双折射光纤
双折射光纤是指在单模光纤中,可以传输相互正交的两个固有偏振模式的光
纤而言。因为,折射率随偏报方向变异的现象称为双折射。在造成双折射的方法
中。它又称作PANDA光纤,即偏振保持与吸收减少光纤(Polarization-maintai-
ning AND Absorption- recing fiber)。它是在纤芯的横向两则,设置热
膨胀系数大、截面是圆形的玻璃部分。在高温的光纤拉丝过程中,这些部分收缩,
其结果在纤芯y方向产生拉伸,同时又在x方向呈现压缩应力。致使纤材出现光弹
性效应,使折射率在X方向和y方向出现差异。依此原理达到偏振保持恒定。
十五 抗恶环境光纤
通信用光纤通常的工作环境温度可在-40~+60℃之间,设计时也是以不受大
量辐射线照射为前提的。相比之下,对于更低温或更高温以及能遭受高压或外力
影响、曝晒辐射线的恶劣环境下,也能工作的光纤则称作抗恶环境光纤(Hard
Condition Resistant Fiber)。
一般为了对光纤表面进行机械保护,多涂覆一层塑料。可是随着温度升高,
塑料保护功能有所下降,致使使用温度也有所限制。如果改用抗热性塑料,如聚
四氟乙稀(Teflon)等树脂,即可工作在300℃环境。也有在石英玻璃表面涂覆
镍(Ni)和铝(A1)等金属的。这种光纤则称为耐热光纤(Heat Resistant Fib-
er)。
另外,当光纤受到辐射线的照射时,光损耗会增加。这是因为石英玻璃遇到
辐射线照射时,玻璃中会出现结构缺陷(也称作色心:Colour Center),尤在
0.4~0.7pm波长时损耗增大。防止办法是改用掺杂OH或F素的石英玻璃,就能抑
制因辐射线造成的损耗缺陷。这种光纤则称作抗辐射光纤(Radiation Resista-
nt Fiber),多用于核发电站的监测用光纤维镜等。
十六 密封涂层光纤
为了保持光纤的机械强度和损耗的长时间稳定,而在玻璃表面涂装碳化硅
(SiC)、碳化钛(TiC)、碳(C)等无机材料,用来防止从外部来的水和氢的
扩散所制造的光纤(HCF:HermeticallyCoated Fiber)。目前,通用的是在化
学气相沉积(CVD)法生产过程中,用碳层高速堆积来实现充分密封效应。这种
碳涂覆光纤(CCF)能有效地截断光纤与外界氢分子的侵入。据报道它在室温的
氢气环境中可维持20年不增加损耗。当然,它在防止水分侵入延缓机械强度的疲
劳进程,其疲劳系数(Fatigue Parameter)可达200以上。所以,HCF被应用于
严酷环境中要求可靠性高的系统,例如海底光缆就是一例。
十七 碳涂层光纤
在石英光纤的表面涂敷碳膜的光纤,称之碳涂层光纤(CCF:Carbon Coated
Fiber)。其机理是利用碳素的致密膜层,使光纤表面与外界隔离,以改善光纤
的机械疲劳损耗和氢分子的损耗增加。CCF是密封涂层光纤(HCF)的一种。
十八 金属涂层光纤
金属涂层光纤(Metal Coated Fiber)是在光纤的表面涂布Ni、Cu、A1等
金属层的光纤。也有再在金属层外被覆塑料的,目的在于提高抗热性和可供通
电及焊接。它是抗恶环境性光纤之一,也可作为电子电路的部件用。
早期产品是在拉丝过程中,涂布熔解的金属作成的。由于此法因被玻璃与
金属的膨胀系数差异太大,会增微小弯曲损耗,实用化率不高。近期,由于在
玻璃光纤的表面采用低损耗的非电解镀膜法的成功,使性能大有改善。
十九 掺稀土光纤
在光纤的纤芯中,掺杂如何(Er)、钦(Nd)、谱(Pr)等稀土族元素的
光纤。1985年英国的索斯安普顿(Sourthampton)大学的佩思(Payne)等首
先发现掺杂稀土元素的光纤(Rare Earth DoPed Fiber)有激光振荡和光放大
的现象。于是,从此揭开了惨饵等光放大的面纱,现在已经实用的1.55pmEDFA
就是利用掺饵的单模光纤,利用1.47pm的激光进行激励,得到1.55pm光信号放
大的。另外,掺错的氟化物光纤放大器(PDFA)正在开发中。
二十 喇曼光纤
喇曼效应是指往某物质中射人频率f的单色光时,在散射光中会出现频率f
之外的f±fR, f±2fR等频率的散射光,对此现象称喇曼效应。由于它是物质
的分子运动与格子运动之间的能量交换所产生的。当物质吸收能量时,光的振
动数变小,对此散射光称斯托克斯(stokes)线。反之,从物质得到能量,而
振动数变大的散射光,则称反斯托克斯线。于是振动数的偏差FR,反映了能级,
可显示物质中固有的数值。
利用这种非线性媒体做成的光纤,称作喇曼光纤(RF:Raman Fiber)。
为了将光封闭在细小的纤芯中,进行长距离传播,就会出现光与物质的相互作
用效应,能使信号波形不畸变,实现长距离传输。
当输入光增强时,就会获得相干的感应散射光。应用感应喇曼散射光的设
备有喇曼光纤激光器,可供作分光测量电源和光纤色散测试用电源。另外,感
应喇曼散射,在光纤的长距离通信中,正在研讨作为光放大器的应用。
二十一 偏心光纤
标准光纤的纤芯是设置在包层中心的,纤芯与包层的截面形状为同心圆型。
但因用途不同,也有将纤芯位置和纤芯形状、包层形状,作成不同状态或将包
层穿孔形成异型结构的。相对于标准光纤,称这些光纤叫异型光纤。
偏心光纤(Excentric Core Fiber),它是异型光纤的一种。其纤芯设置
在偏离中心且接近包层外线的偏心位置。由于纤芯靠近外表,部分光场会溢出
包层传播(称此为渐消彼,Evanescent Wave)。
因此,当光纤表面附着物质时,因物质的光学性质在光纤中传播的光波受
到影响。如果附着物质的折射率较光纤高时,光波则往光纤外辐射。若附着物
质的折射率低于光纤折射率时,光波不能往外辐射,却会受到物质吸收光波的
损耗。利用这一现象,就可检测有无附着物质以及折射率的变化。
偏心光纤(ECF)主要用作检测物质的光纤敏感器。与光时域反射计(OTDR)
的测试法组合一起,还可作分布敏感器用。
二十二 发光光纤
采用含有荧光物质制造的光纤。它是在受到辐射线、紫外线等光波照射时,
产生的荧光一部分,可经光纤闭合进行传输的光纤。
发光光纤(Luminescent Fiber)可以用于检测辐射线和紫外线,以及进
行波长变换,或用作温度敏感器、化学敏感器。在辐射线的检测中也称作闪光
光纤(Scintillation Fiber)。
发光光纤从荧光材料和掺杂的角度上,正在开发着塑料光纤。
二十三 多芯光纤
通常的光纤是由一个纤芯区和围绕它的包层区构成的。但多芯光纤(Multi
Core Fiber)却是一个共同的包层区中存在多个纤芯的。由于纤芯的相互接近
程度,可有两种功能。
其一是纤芯间隔大,即不产生光耦会的结构。这种光纤,由于能提高传输
线路的单位面积的集成密度。在光通信中,可以作成具有多个纤芯的带状光缆,
而在非通信领域,作为光纤传像束,有将纤芯作成成千上万个的。
其二是使纤芯之间的距离靠近,能产生光波耦合作用。利用此原理正在开
发双纤芯的敏感器或光回路器件。
二十四 空心光纤
将光纤作成空心,形成圆筒状空间,用于光传输的光纤,称作空心光纤
(Hollow Fiber)。
空心光纤主要用于能量传送,可供X射线、紫外线和远红外线光能传输。空
心光纤结构有两种:一是将玻璃作成圆筒状,其纤芯与包层原理与阶跃型相同。
利用光在空气与玻璃之间的全反射传播。由于,光的大部分可在无损耗的空气
中传播,具有一定距离的传播功能。二是使圆筒内面的反射率接近1,以减少反
射损耗。为了提高反射率,有在简内设置电介质,使工作波长段损耗减少的。
例如可以作到波长10.6pm损耗达几dB/m的。
③ 光纤通信的同名图书
同名图书信息
书 名:光纤通信作者:聂兵
出版社:北京理工大学出版社
出版时间:2010-1-1
ISBN: 9787564025731
开本:16开
定价:28.00元
内容简介
本书全面讲述了光纤通信的基本理论和应用,主要内容包括:光纤通信系统的组成;光纤(光缆)结构、类型与传输特性,光纤的连接;光无源器件原理与应用;光源、光源调制与光发送机原理和性能指标;光检测器原理,光接收机的组成、原理和性能;光放大及其应用;SDH体系和数字光纤传输系统设计与性能指标;波分复用的原理与技术;SDH传送网,光传送网(OTN),自动交换光网络(ASON),光城域网技术,光接入网结构与应用等。
本书力求在光纤通信系统的原理、应用、设计等方面提供必要的信息,可以作为通信工程、电子信息工程和光电信息工程等相近专业的本科教学用书和光纤通信的技术培训教材,也可作为一般工程技术人员的参考用书。
图书目录
第1章 概述
第2章 光纤光缆
第3章 光无源器件
第4章 光源与光发送机
第5章 光检测器与光接收机
第6章 光放大器
第7章 SDH与数字光纤传输系统
第8章 光波以分复用
第9章 光网络
参考文献
同名图书信息
书 名:光纤通信
作者:卜爱琴
出版社:北京师范大学出版集团,北京师范大学出版社
出版时间:2009年08月
ISBN: 9787303103300
开本:16开
定价:26元
内容简介
《光纤通信》共分10章:第1章介绍光纤通信的发展现状、光纤通信的基本组成、光纤通信的特点及发展趋势。第2章介绍光纤的结构和分类、光纤的导光原理、光纤的损耗和色散特性、光缆的结构和种类以及光缆的型号。第3章介绍光缆线路的敷设、光纤光缆的接续与成端、光缆线路的测试以及光缆线路的维护。
目录
第4章介绍光源器件的工作原理、基本结构和工作特性。
第5章介绍光电检测器的工作原理、基本结构和工作特性。
第6章介绍无源光器件的种类、作用、主要性能及应用。
第7章介绍PDH光传输系统,包括光发射机和光接收机的组成、工作原理和主要性能指标,光中继器和光放大器的组成与应用、光纤通信常用线路码型及中继距离的计算。
第8章介绍SDH的基本概念、速率与帧结构,SDH的同步复用与映射原理、SDH开销、SDH设备的逻辑功能描述、SDH传送网与自愈网、SDH网同步、网络传输性能及华为OptiX OSN 2500光传输设备。
第9章介绍光波分复用系统,包括密集波分系统(DWDM)的概念和特点,DWDM的基本类型、DWDM系统的基本结构和工作原理、华为OptiX BSW 320GDwDM设备。
第10章介绍光纤通信实训,包括光纤与光缆的接续、光缆交接箱与ODF架的成端、0TDR的使用与光纤的测试、光纤通信系统误码的测试、光发射机和光接收机性能参数的测试及SDH设备的维护。
同名图书信息
光纤通信
作者:刘世安,彭小娟主编
出 版 社:电子工业出版社
出版时间:2010-1-1
开本:16开
I S B N :9787121100239
定价:¥29.00
内容简介
本书全面系统地介绍了光纤通信的基础知识,包括光纤通信系统的组成、光纤和光缆、光纤通信的基本器件、光发射机和光接收机、光纤通信系统与设计、SDH技术、波分复用技术、光纤通信新技术和光纤通信常用仪表,在相关章节附有实验实训内容。
本书紧扣行业标准和规范,具有较强的实用性和针对性,既可作为高职高专院校通信、电子信息类相关专业的教材,也可作为光纤通信技术培训用书,并可作为技能鉴定的参考用书。
目录
第1章 光纤通信概论
第2章 光纤和光缆
第3章 光纤通信的基本器件
第4章 光发送机和光接收机
第5章 光纤通信系统与设计
第6章 SDH 技术
第7章 波分复用技术
第8章 光纤通信新技术
第9章 常用光纤通信仪表
同名图书信息
作者:刘增基书 名:光纤通信
出版社:西安电子科技大学出版社
出版时间:2008.12
ISBN: 7560610290
开本:16开
定价:23元
内容简介
本书全面地介绍了光纤通信系统的基本组成;光纤和光缆的结构和类型,光纤的传输原理和特性,光纤特性的测量;光源、光检测器和光无源器件的类型、原理和性质;光端机的组成和特性;数字光纤通信系统(PDH和SDH);模拟光纤通信系统,包括副载波复用光纤通信系统;光纤通信的若干新技术,如光纤放大器、光波分复用技术、光交换技术、光孤子通信、相干光通信技术、光时分复用技术等;光纤通信网络,包括单波长的SDH传送网,多波长的WDM全光网和光接入网。本书在内容上力求理论上的系统性以及技术上的新颖性和实用性。
目录
第一章 概论
第二章 光纤和光缆
第三章 通信用光器件
第四章 光端机
第五章 数字光纤通信系统
第六章 模拟光纤通信系统
第七章 光纤通信新技术
第八章光纤通信网络
附录A SDH系统光接口标准
附录B PDH系统光线路设备的实例
附录C VSB-AM/SCM系统光链路性能实例
参考文献
图书信息
书名:光纤通信(高职高专教育)/普通高等教育十五国家级规划教材
ISBN:704012623
作者:林达权
出版社:高等教育出版社
定价:20
页数:1
出版日期:2003-8-1
版次:1
开本:现货
包装:平装
简介:《光纤通信》一书是普通高等教育“十五”国家级规划教材,适用于高职高专教育。本书的特点是以宽带通信为中心,理论与实践紧密结合。
本书介绍了光纤通信基本原理、准同步光纤通信原理、同步光纤通信和密集波分复用原理等相关知识。
本书在编写过程中充分考虑了高职高专教育特色,特邀了实践经验丰富的现场工程师参加编写。本书概念清晰、通俗易懂,注重新知识、新技术内容的介绍。
目录:
第一部分光纤光缆和光纤通信的基本器件
第1章概论
1.1 光纤通信发展的几个亮点
1.2 光纤通信系统的组成
1.3 光纤通信系统所涉及的光纤光缆和器件
1.4 光纤通信的优点
1.5 光纤通信的发展趋势
小结
复习思考题
第2章
光纤光缆
2.1光纤光缆的结构
2.2光纤的导光原理
2.3光纤的传输特性
2.4单模光纤和多模光纤
2.5光缆线路敷设
2.6光缆的接续
小结
复习思考题
第3章
光纤参数的测试
3.1 测试项目和要求
3.2 光纤衰减常数的测量
3.3 单模光纤色散特性的测试
3.4 多模光纤衰减常数的测试
3.5 多模光纤带宽的测试
小结
复习思考题
第4章
光源
4.1引言
4.2 半导体的发光机理
4.3 半导体激光器LD
4.4 发光二极管LED
小结
复习思考题
第5章
光检测器
5.1 作用与要求
5.2 PN结形光电二极管
5.3 PIN光电二极管
5.4雪崩光电二极管
小结
复习思考题
第6章光放大器
6.1 光放大器的类型
6.2掺铒光纤放大器的组成
6.3 掺铒光纤放大器的工作原理
6.4 光放大器的应用场合
小结
复习思考题
第7章
光无源器件
7.1 光纤活动连接器
7.2 光衰减器
7.3 光波分复用器
7.4 其它无源器件
小结
复习思考题
第二部分 准同步(PDH)光纤通信原理
第8章
长途光缆通信系统介绍
8.1长途光缆通信系统的组成
8.2PDH光缆通信系统组成举例
小结
复习考思题
第9章复用设备的工作原理
9.1PCM端机方框简图
9.2基群复用设备
9.3 高次群复用设备的工作原理
小结
复习思考题
第10章光端机的工作原理
10.1概述
10.2光端机方框组成
小结
复习思考题
第11章 光端机设备举例
11.1概述
11.2OPTIMUX-H型设备方框组成
11.3OPTIMUX-H型设备机架组成
11.4手持终端
小结
复习思考题
第三部分 同步(SDH)光纤通信和密集波分复用(DWDM)原理
第12章概述
12.1PDH存在的问题
12.2SDH的主要特点
12.3SDH工作波长区和比特率
小结
复习思考题
第13章 帧结构
13.1基本帧结构
13.2STM—N帧结构
13.3STS—N帧结构
小结
复习思考题
第14章SDH复用原理
14.1基本复用结构
14.2STM—1信号的形成
14.3STM—N信号的形成
14.4指针
14.5开销字节
小结
复习思考题
第15章同步设备参考逻辑功能框图
15.1 复合功能(CF)
15.2 单元功能(EF)
15.3 辅助功能
15.4 复用过程与参考模型的对应关系
小结
复习思考题
第16章 接口
16.1 光接口
16.2 电接口
小结
复习思考题
第17章基本网络单元的工作原理
17.1终端复用设备
17.2上/下路复用设备(ADM)
17.3网络转换设备
17.4交叉连接设备(SDXC)
小结
复习思考题
第18章SDH传送网
18.1SDH传送网
18.2SDH网络结构
18.3SDH网的物理拓朴
18.4自愈网
小结
复习思考题
第19章光波分复用
19.1 光波分复用概述
19.2 光波分复用的基本原理
19.3 光波分复用器
19.4 ZXWM-32密集波分复用设备
19.5IP over WDM技术
19.6当前要发展第三代光纤通信
小结
复习思考题
第20章光传输系统的操作维护
20.1ZXSM-2500光传输设备系统结构
20.2ZXSM-2500光传输设备硬件系统
20.3ZXSM-2500光传输设备网管系统
20.4网管系统的功能
20.5设备安装调试流程
20.6ZXSM-150/600/2500设备调测
小结
复习思考题
第21章光纤通信与相关学科
21.1 光纤通信与计算机技术
21.2 光纤通信与交换技术
21.3 光纤通信与数字通信
21.4 光纤通信与用户宽带接入网
小结
复习思考题
附录:中英文索引
参考文献
图书信息
书名:光纤通信 - - 通信用光纤、器件和系统(21世纪信息与通信技术教程)
ISBN:711512300
作者:美国光学学会Michael Bas
出版社:人民邮电出版社
定价:37
页数:330
出版日期:2004-7-1
版次:1
开本:16开
包装:
简介:光纤通信领域所涉及的光纤、光放大器、波分复用和光分/插复用等关键技术的相继问世,使光纤通信领域中发生了一场又一场技术革命。光纤具有巨大的带宽资源,成为通信系统首选的传输媒质;光放大器代替了光-电-光中继器,实现了点到点的全光通信:波分复用不仅使单根光纤的传输容量增加了几倍、几十倍乃至几百倍,而且实现了多种不同类型的通信业务同时在一根光纤上传输;光分/插复用实现了信息在光域上的传送、路由的选择与交换,从而避免出现电子瓶颈的影响,完全满足了未来通信的高速率、大容量、远距离的全光通信要求。为了满足光纤通信日新月异的发展需要,受人民邮电出版社的委托,我们集体翻译了这本《光纤通信》技术专著,以使中国广大从事通信工作的读者能对光纤通信的基本概念、光纤结构、光器件工作原理、光网络组网技术和光纤通信新技术等内容有所了解。
Michael Bass是美国佛罗里达大学光学学院/光学与激光研究和教育中心光学、物理、电子和计算机工程教授。他是从Carnegie-Mellon获得其物理学学士学位,从Michigan大学获得其物理学硕士学位和博士学位的。
本书是由美国光学学会组织的18名世界著名的光纤通信专家集体编写的一本介绍通信用光纤、器件和系统的最新研究成果的专著。书中全面地介绍了光纤通信技术领域中所涉及到的各个分支,如光纤、光纤通信技术、光纤非线性效应、光纤通信用光源、调制器和探测器、光纤放大器、光纤通信线路、光纤通信系统中的光孤子、耦合器、合(分)波器、光纤布拉格光栅、组网微光器件、半导体光放大器、光时分复用通信网、光波分复用(WDM)光纤通信网、光纤通信标准等具体技术内容。
本书内容翔实、技术新颖,既有理论分析计算,又有大量应用实例。由于本书的作者都是光纤通信领域国际知名的专家,所以本书是一本既充分展现作者各自研究专长,又凝聚作者集体智慧的高水平的技术专著。它可供从事光纤生产和工程应用以及从事光纤通信研究的技术人员使用,也可作为高等院校光纤通信技术及相关专业师生的教学参考书。
目录:
第1章 光纤与光纤通信
1.1 术语表
1.2 引言
1.3 工作原理
1.4 光纤色散与衰减
1.4.1 衰减
1.4.2 模间色散
1.4.3 材料色散
1.4.4 波导色散和折射率分布色散
1.4.5 描述光纤的归一化变量
1.4.6 光纤色散的计算
1.5 光纤的偏振特性
1.6 光纤的光学性能和机械性能
1.6.1 衰减测量
1.6.2 色散与带宽测量
1.6.3 光纤色散的位移与平坦
1.6.4 可靠性的评价
1.7 光纤通信
1.7.1 点到点线路
1.7.2 先进的传输技术
1.8 光纤的非线性光学性能
1.8.1 受激散射过程
1.8.2 脉冲压缩与光孤子传输
1.8.3 四波混频
1.8.4 光纤中的光折射非线性
1.9 光纤材料:化学与制造
1.9.1 常用光纤的制造
1.9.2 掺杂剂化学
1.9.3 其它制造方法
1.9.4 红外光纤制造
1.10 参考文献
1.11 进一步阅读的资料
第2章 光纤通信技术及系统概述
2.1 引言
2.2 基本技术
2.2.1 光纤
2.2.2 发射光源
2.2.3 光探测器
2.3接收机灵敏度
2.4 速率和距离限制
2.4.1 提高速率
2.4.2 更长的中继距离
2.5 光放大器
2.5.1 半导体放大器和光纤放大器的比较
2.5.2 光放大器在通信中的应用
2.6 光纤网络
2.7 光纤中的模拟传输
2.7.1 载噪比(CNR)
2.7.2 光纤中的模拟视频传输
2.7.3 非线性畸变
2.8 技术和应用方向
2.9 参考文献
第3章 光纤的非线性效应
3.1 光纤非线性光学的关键问题
3.2 自相位调制和交叉相位调制
3.3受激拉曼散射
3.4受激布里渊散射
3.5 四波混合
3.6 结论
3.7 参考文献
第4章 光纤通信系统用的光源. 调制器和探测器
4.1 引言
4.2 双异质结结构激光二极管
4.2.1 一个密度反转注入有源区
4.2.2 在有源层平面内的载流子的限制
4.2.3 在有源层附近的光的限制
4.2.4 限制载流子注入条形几何结构
4.2.5 光的横向限制
4.2.6 传导光沿着条形方向上的后向反射
4.2.7 安装使光从侧面发出
4.2.8 适合封装在一个密封盒
4.2.9 光纤尾纤连接
4.2.10 寿命
4.3 激光二极管的工作特性
4.3.1 激光器阈值
4.3.2 光输出与电流输入(L-I曲线)
4.3.3 温度与激光器性能的关系
4.3.4 发光的空间特性
4.3.5 激光器光的光谱特性
4.3.6 偏振
4.4 激光二极管的瞬态响应
4.4.1 开通延迟
4.4.2 弛豫振荡
4.4.3 调制响应和增益饱和
4.4.4 频率啁啾
4.5 激光二极管的噪声特性
4.5.1 相对强度噪声(RIN)
4.5.2 信噪比(SNR)
4.5.3 多模激光器的模分配噪声
4.5.4 相位噪声一线宽
4.5.5 外部光反馈和相干破坏
4.6 量于阱激光器和应变激光器
4.6.1 量子阱激光器
4.6.2 应变层量子阱激光器
4.7 分布反馈(DFB)和分布布拉格反射器(DBR)激光器
4.7.1 分布的布拉格反射器(DBR)激光器
4.7.2 分布反馈(DFB)激光器
4.8 发光二极管(LED)
4.8.1 面发光LED
4.8.2 边发光LED
4.8.3 LED的工作特性
4.8.4 瞬态响应
4.8.5 驱动电路和封装
4.9 垂直腔表面发光激光器(VCSEL)
4.9.1 量子阱的数量
4.9.2 镜面反射率
4.9.3 电注入
4.9.4 发射光的空间特性
4.9.5 光输出与电流输出
4.9.6 光谱特性
4.9.7 偏振
4.9.8 其它波长的VCSEL
4.10 锯酸锂调制器
4.10.1 电-光效应
4.10.2 相位调制
4.10.3 Y形干涉型(马赫—曾德尔)调制器
4.10.4 高速工作
4.10.5 插入损耗
4.10.6 偏振无关
4.10.7 光反射率和光损伤
4.10.8 δ-β反向调制器
4.11 光纤系统用电吸收调制器
4.11.1 电吸收强度调制
4.11.2 在半导体中施加一个电场
4.11.3 集成的调制器
4.11.4 工作特性
4.11.5 QW中的电吸收的先进概念
4.12 电-光和电折射半导体调制器
4.12.1 半导体中的电-光效应
4.12.2 半导体中的电折射
4.12.3 半导体干涉型调制器
4.13 PIN二极管
4.13.1 典型的几何形状
4.13.2 灵敏度(响应度)
4.13.3 速度
4.13.4 暗电流
4.13.5 光电二极管的噪声
4.14 雪崩光电二极管. MSM探测器和肖特基二极管
4.14.1 雪崩探测器
4.14.2 MSM探测器
4.14.3 肖特基光电二极管
4.15 参考文献
第5章 光纤放大器
5.1 引言
5.2 掺稀土元素放大器的结构和工作
5.2.1 泵浦配置和最佳的放大器长度
5.2.2 工作状态
5.3 EDFA的物理结构和光的相互作用
5.3.1 EDFA的能级
5.3.2 增益形成
5.3.3 EDFA的泵浦波长的选择
5.3.4 噪声
5.3.5 增益平坦
5.4 其它稀土元素系统中的增益形成
5.4.1 掺镨光纤放大器(PDFA)
5.4.2 掺铒/镱光纤放大器(E/YDFA)
5.5 参考文献
第6章 光纤通信线路(电信. 数据通信和模拟)
6.1 引言
6.2 品质因数:SNR. BER. MER和SFDR
6.3 线路功率预算分析:安装损耗
6.3.1 传输损耗
6.3.2 衰减与波长的关系
6.3.3 连接器损耗和接头损耗
6.4 线路功率预算分析:光功率代价
6.4.1 色散
6.4.2 模分配噪声
6.4.3 消光比
6.4.4 多路串扰
6.4.5 相对强度噪声(RIN)
6.4.6 抖动
6.4.7 模噪声
6.4.8 辐射引起的损耗
6.5 参考文献
第7章 光纤通信系统中的光孤子
7.1 引言
7.2 经典孤子的特性
7.3 光孤子的性能
7.4 经典的光孤子传输系统
7.5 频率导向滤波器
7.6 可调频率导向滤波器
7.7 波分复用
7.8 色散管理光孤子
7.9 波分复用色散管理光孤子传输
7.10 结论
7.11 参考文献
第8章 熔锥光纤耦合器. 波分复用器和解复用器
8.1 引言
8.2 波长无关
8.3 波分复用
8.4 1xN光功率分配器
8.5 开关和衰减器
8.6 马赫-曾德尔器件
8.7 偏振器件
8.8 结论
8.9 参考文献
第9章 光纤布拉格光栅
9.1 术语表
9.2 引言
9.3 光敏性
9.4 布拉格光栅的性能
9.5 光纤光栅的制造
9.6 光纤光栅的应用
9.7 参考文献
第10章 组网的微光器件
10.1 引言
10.2 通用的器件
10.3 网络功能
10.3.1 衰减器
10.3.2 光功率分配器和方向耦合器
10.3.3 隔离器
10.3.4 环形器
10.3.5 复用器/解复用器/双工器
10.3.6 机械开关
10.4 子器件
10.4.1棱镜
10.4.2 光栅
10.4.3 滤波器
10.4.4 光束分路器
10.4.5 法拉第旋转器
10.4.6 偏振器
10.4.7 自聚焦棒透镜
10.5 器件
10.5.1 衰减器
10.5.2 功率分配和方向耦合器
10.5.3 隔离器和环路器
10.5.4 复用器/解复用器/双工器
10.5.5 机械开关
10.6 参考文献
第11章 半导体光放大器和波长转换
11.1 术语表
11.2 为什么要进行光放大
11.2.1 光纤放大器
11.2.2 半导体放大器
11.3 为什么要进行光波长转换
11.3.1 改变光波长的方案
11.3.2 半导体光波转换器
11.4 参考文献
第12章 光时分复用通信网络
12.1 术语表
12.1.1 定义
12.1.2 缩与
12.1.3 符号
12.2 引言
12.2.1 基本概念
12.2.2 取样
12.2.3 抽样定理
12.2.4 插入
12.2.5 解复用——发射机和接收机的同步
12.2.6 数字信号——脉冲编码调制
12.2.7 脉冲编码调制
12.2.8 模-数转换
12.2.9 二进制数字和线路编码的光表示方法
12.2.10 定时恢复
12.3 时分复用和时分多址
12.3.1 概述
12.3.2 时分多址
12.3.3光域TDMA
12.3.4 时分复用
12.3.5 帧与体系
12.3.6 SONET和频率调整
12.4 器件技术介绍
12.4.1 光时分复用——串行与并行
12.4.2 器件技术——发射机
12.4.3 法布里-珀罗激光器
12.4.4分布反馈激光器
12.4.5 锁模激光器
12.4.6 直接调制或间接调制
12.4.7 外调制
12.4.8 电光调制器
12.4.9 电吸收调制器
12.4.10 光时钟恢复
12.4.11 解复用的全光交换
12.4.12 接收机系统
12.4.13 超高速光时分复用光线路——一个论文实例
12.5 总结与展望
12.6 进一步阅读的资料
第13章 波分复用(WDM)光纤通信网络
13.1 引言
13.1.1 光纤带宽
13.1.2 WDM技术介绍
13.2 光纤损伤
13.2.1 色散
13.2.2 光纤非线性
13.2.3 色散补偿和色散管理
13.3 WDM网络的基本结构
13.3.1 点到点线路
13.3.2 波长路由网络
13.3.3 WDM星. 环和网状结构
13.3.4 网络重构性
13.3.5 电路交换和数据包交换
13.4 WDM网络中的掺铒光纤放大器
13.4.1 EDFA级联的增益峰化
13.4.2 EDFA增益平坦
13.4.3 快速动率瞬变
13.4.4 超宽带EDFA
13.5 动态信道功率均衡
13.6 WDM中的串扰
13.6.1 非相干串扰
13.6.2 相干串扰
13.7 总结
13.8 致谢
13.9 参考文献
第14章 红外光纤
14.1 引言
14.2 非氧化物和重金属氧化物玻璃IR光纤
14.2.1 HMFG光纤
14.2.2 锗酸盐光纤
14.2.3 硫化物光纤
14.3 晶体光纤
14.3.1 PC光纤
14.3.2 SC光纤
14.4 空心波导
14.4.1 空心金属和塑料波导
14.4.2 空心玻璃波导
14.5 总结和结论
14.6 参考文献
第15章 光纤传感器
15.1 引言
15.2 非本征法布里-珀罗干涉传感器
15.3 本征法布里-珀罗干涉传感器
15.4 光纤布拉格光栅传感器
15.4.1 工作原理
15.4.2 布拉格光栅传感器制造
15.4.3 布拉格光栅传感器
15.4.4 布拉格光栅应变传感器的限制因素
15.5 长周期光栅传感器
15.5.1 工作原理
15.5.2 LPG制造过程
15.5.3 长周期光栅的温度敏感性
15.6 传感方案的比较
15.7 结论
15.8 参考文献
15.9 进一步阅读的资料
第16章 光纤通信标准
16.1 引言
16.2 ESCON
16.3 FDDI
16.4 光纤通道标准
16.5 ATM/SONET
16.6吉比特以太网
16.7 参考文献
④ 初中物理最后的那些关于电磁波,光纤通信.........的 重要考点,有那些啊
第九章 信息的传递
课程标准的要求:
1.知道光是电磁波.
2.知道电磁波的传播速度.
3.了解电磁波的应用及对人类社会发展的影响.
全章内容概述:
1.现代顺风耳__电话 电话的工作原理及电话交换机的作用.
2.电磁波的海洋 电磁波的产生及传播,电磁波的波长,频率和波速的关系.
3.广播.电视和移动通信 无线电广播和电视的工作过程,移动电话是如何工作的?
4.越来越宽的信息之路 微波通信为什么需要中继站,卫星通信?光纤为什么能传送大量的信息?什么是宽带网?
教材内容分析及建议
章首图:(投影)这是一幅古长城,绵延万里,蜿蜒起伏,向人们展示了它的雄伟、壮观。同时也引起学生对它的思考,古长城的作用—抵御来犯之敌,“烽火台”的烟火点燃向远处同伴传递着信息;古人用长城传递信息,现代人用那些方式传递信息呢?引入新课。
教材用一幅组合图(P74),让学生观察,通过“想想议议”来对通信发展的回顾,让学生了解信息传递的历史。教师可让学生在课堂上尽情的交流,可以先让每个人说出自己知道的通信方式,再通过书上的组合图的提示,引导学生梳理出同学通信发展的历史脉络。
教师引导学生对组合图观察,让学生感知了信息是需要运载才能传递的。教师可告诉学生,信息常指的是消息、情报、信号、指令、数据、密码等的总称。信息传递需要的运载工具就是载体。如语文、文字、印刷品、电流、数字网络都是信息的载体。教材就按照信息的载体的发展情况来编写的。
第一节 现代顺风耳—电话
本节的重点是让学生明白电话的工作原理和电话交换机的作用,让学生了解数字信号和摸拟信号。教材通过神化的传说“顺风耳”,引起学生关注信息传递的兴趣,体现了人文精神。讲述了当今社会是狠多神话已变成了现实,引出了电话的内容。
图9.1-2电话:(投影)他向学生展示了电话是利用电流把信息传导远处的,图注告诉了话筒、听筒的基本作用。
电话交换机:教材通过电话的问世到交换机的出现,让学生体会到科学技术进步与社会发展的意义。
想想议议:让学生思考电话交换机的作用,即通过电话交换机能减少电话线的数量,减少材料的浪费。
拓展:程控电话 技术发展,电话交换机有人操作变为自动电话交换机(通过电磁继电器接线),即程控电话机。模拟通信和数字通信:电话分模拟和数字两种。电流传递的信号叫模拟信号,这种通信方式叫模拟通信。用不同符号的不同组合表示的信号叫数字信号,这种通信方式叫数字通信。数字通信是未来的发展方向。
建议:模拟通信、数字通信看起来是技术性很强的名词,实际上它与我们生活息息相关教材通过形象的描述对这两个概念进行了介绍,教师教学时不要展开。教材介绍了莫尔斯电码、汉字电报码旨在加深学生对数字信号的认识,扩大学生的知识面。教师也不要过多讲解。想想做做、动手动脑学物理(见P79)
第二节 电磁波的海洋
这一节是本章的重点。电磁波其实是无限的信息传递的内容。主要讲解了电磁波的产生及传播。
电磁波的产生:教师不要讲产生的基本原理,要通过演示实验来向学生展示电磁波的存在及产生,即电磁波是由迅速变化的电流来产生的。通过实验打破学生对电磁波的神秘感。
电磁波的传播:教师可以声波的传播需要介质为基础,让学生想象:电磁波是否也需要介质呢?让学生带着问题去研究,师生共同设计方案动手实验得出结论。
电磁波的波速与波长、频率的关系,及电磁波谱要引导学生分析。让它们有一个大概的了解对于电磁波在真空中传播速度C=3×105㎞∕S(即30万千米每秒)应让学生记忆。
科学世界:(投影)微波炉主要告诉学生电磁波不仅可以用来传递信息,还可以使食物分子发生剧烈振动,扩大学生视野,让学生做科普性的了解。
第三节 广播、电视和移动通信
这一节内容,教师可采用科普讲座的形式,向学生介绍展示。主要介绍了无线电广播信号的发射和接收、电视的发射和接收、移动电话的基本原理。教师只作简单介绍,不要深究。笔者认为主要通过教材5幅图片来展示讲解。
科学世界:介绍音频、视频、射频和频道,要引导学生阅读。
STS:电视给我们带来了什么?教师要让学生讨论交流。
第四节 越来越宽的信息之路
此节内容也是一个科普性介绍的内容,主要讲解了为什么要利用微波通信,为什么要建立微波中继站、卫星通信、光纤通信。此部分内容主要通过图片向学生展示介绍即可。
STS:我国光缆通信的发展,教师可以引导学生阅读。它旨在培养学生保护光缆的意识。光的频率比电磁波的频率更高,因此要用光纤通信。
无线电波:通信,比如收音机,无线电视机,对讲机等等
微波:手机,雷达,微波炉
红外线:热成像仪,红外制导导弹,火的温暖(热辐射),热效应有关的都是,电视机遥控器
可见光,太多了,不说
紫外线,杀菌
X光,医学上人体透视,工程上的探伤,物理学的测量晶体结构
譬如,1.无线电波进行调制后就载有各种信息,用来通信.
2.微波是波长较无线电波短的电磁波,传播时直线性好用来作为雷达波.
而且其频率接近食物的固有频率,容易引起食物分子共振,所以有微波炉.
3红外线波长比微波短,比红色光长,不可见,有显著热效应,有红外烤箱.
波长长,易发生衍射,所以有红外遥感技术.此外,所有有一定温度的物体
对外有红外辐射.
4.紫外线频率比可见光高,有显著的荧光效应和化学效应.如日光灯灯管中气体
电离发出的紫外线照射管壁上的荧光物质发出白光.最常见的应用是验钞机.化学效应的应用主要是紫外线消毒箱.
5.x光是原子核内层电子受激发发出的光,频率比紫外高.x光的穿透力随密度的
不同而不同,所以人体透视,工程上的探伤的应用.
6.伽马射线的穿透能力很强应用于化疗,工程探伤,育种等.