㈠ 卫星通信应用在什么场合

卫星通信应用在电视、电话、传真、电报和数据等场合。

卫星通信的应用领域不断扩大,除金融、证券、邮电、气象、地震等部门外,远程教育、远程医疗、应急救灾、应急通信、应急电视广播、海陆空导航、连接互联网的网络电话、电视等将会广泛应用。

卫星通信新技术的发展层出不穷。例如甚小口径天线地球站(VSAT)系统,中低轨道的移动卫星通信系统等都受到了人们广泛的关注和应用。卫星通信也是未来全球信息高速公路的重要组成部分。它以其覆盖广、通信容量大。


(1)数字卫星通信扩展阅读:

发展历程

从1954年开始,美国先后利用月球、无源气球卫星、铜针无源偶极子带作为中继站,进行了电话、电视传输等无源卫星通信试验,但事实证明并无很大实用价值。直到1957年,前苏联发射了第一颗人造卫星,才使卫星通信进入有源卫星试验阶段。

1958年12月,美国用阿特拉斯火箭将一颗重150磅的“斯柯尔”低轨道卫星射入椭圆轨道(近地点200km,远地点1 700km),星上发射机输出功率8W,频率为150MHz。卫星利用磁带录音,将甲站发出的信息(电话、电报),延迟转发到乙站。

1960年10月,美国国防部又将“信使”卫星发射到高度1 000km、倾角为28.3°的轨道上,使用2GHz频率,进行了与上述类似的低轨道迟延通信试验。

1962年6月,美国航空宇航局用德尔它火箭把“电星”卫星送入1 060~4 500km的椭圆轨道;同年12月又发射了“中继“卫星,进入1 270~8 300km的椭圆轨道,在美国、欧洲、南美洲之间进行了多次电话、电视、传真数据的传输试验。

㈡ 卫星通讯是由什么组成

卫星通讯是利用位于高空36000千米的通讯卫星作为中继,使各地面接收站间得以实现双向通信。一个卫星通讯系统由通讯卫星和地面接收站组成。卫星通讯只需在两地各设地面站就能互相通信,有着不受地理条件限制、组网迅速灵活、通讯容量大、通讯费用省等特点。同时由于卫星通讯采用数字方式,而电话、图像等形式的信息都可数字化,因此,可采用统一的卫星数字通讯网,这样不仅能改善传输质量,而且可以使通讯效率大大提高。

1986年7月8日,在北京中央卫星地球站,以及乌鲁木齐、呼和浩特、拉萨国内卫星通信站,同时隆重举行了国内卫星通信网开通仪式,宣告经过两年的努力,国内卫星通信网正式建成并开通。这是国内卫星通信网的骨干网,是租用国际卫星组织的转发器,将北京、拉萨、乌鲁木齐、呼和浩特、广州5个地球站联结起来构成的,它可以覆盖中国全部版图。这个网的建设,从1984年开始,到1986年开通,用了不到两年的时间。除北京中央地球站1985年11月建成试通外,拉萨、乌鲁木齐、呼和浩特地球站,都是在1986年上半年建成试通的。至此,北京至乌鲁木齐、呼和浩特、拉萨间的半自动长途电话、电报、数据和传真业务已经开通;同时,全国有400个电视接收站及时接收了北京中央站向全国发送的中央电视台的第一套节目,100个电视接收站及时接收了国家教育部的函授教导电视节目,并经当地转播台送往千家万户。

国内卫星通信网的开通,是中国通信建设中的一件大事。它不仅有助于解决边远省区和一些部门的通信急需,而且作为长途通信的一个重要传输手段,增强了通信网的机动性和可靠性,对促进信息交流和经济发展,更好地为物质文明建设和精神文明建设服务,具有重要意义。

㈢ 卫星通信的发展历史

卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。
卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再反送回另一地球站。地球站则是卫星系统形成的链路。由于静止卫星在赤道上空36000千米,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一样。三颗相距120度的卫星就能覆盖整个赤道圆周。故卫星通信易于实现越洋和洲际通信。最适合卫星通信的频率是1一10GHz频段,即微波频段、为了满足越来越多的需求,已开始研究应用新的频段,如12GHz,14GHz,20GHz及30GHz。
在微波频带,整个通信卫星的工作频带约有50OMHz宽度,为了便于放大和发射及减少变调干扰,一般在卫星上设置若干个转发器。每个转发器的工作频带宽度为36MHz或72MHz目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。它对于点对点大容量的通信比较适合。近年来,已逐渐采用时分多址技术,即每一地球站占用同一频带,但占用不同的时隙,它比频分多址有一系列优点,如不会产生互调干扰,不需用上下变频把各地球站信号分开,适合数字通信,可根据业务量的变化按需分配,可采用数字话音插空等新技术,使容量增加5倍。另一种多址技术使码分多址(CDMA),即不同的地球站占用同一频率和同一时间,但有不同的随机码来区分不同的地址。它采用了扩展频谱通信技术,具有抗干扰能力强,有较好的保密通信能力,可灵活调度话路等优点。其缺点使频谱利用率较低。它比较适合于容量小,分布广,有一定保密要求的系统使用。
近年来卫星通信新技术的发展层出不穷。例如甚小口径天线地球站(VSAT)系统,中低轨道的移动卫星通信系统等都受到了人们广泛的关注和应用。卫星通信也是未来全球信息高速公路的重要组成部分。它以其覆盖广、通信容量大。通信距离远、不受地理环境限制、质量优、经济效益高等优点,1972年在我国首次应用,并迅速发展,与光纤通信、数字微波通信一起,成为我国当代远距离通信的支柱。

㈣ 数据通信有哪几种方式

  1. 电缆通信

  2. 微波中继通信

  3. 光纤通信

  4. 卫星通信

  5. 移动通信

㈤ 什么是卫星通信技术

微波通信采用接力的办法,通过建立中继站实现了远距离的通信。但是,这种方式也有很大的缺点。因为地球上有些地方是无法建立中继站的。比如,从我国的北京到美国的纽约,距离有上万千米,中间隔着波涛汹涌的太平洋,如果每隔四五十千米,建立一个中继站,就得在海上建200多个站,这是不可能做到的。

1945年,一个名叫克拉克的英国人发表了一篇题为《地球外的中继站》的科学预言论文。在论文中,他提出了一个十分大胆的设想,即人类有可能通过发射人造地球卫星,为地面通信建立设在空间的“中继站”。他说将卫星放到赤道上空约36000千米的同步轨道上。这样,一颗卫星上的中继站所转发的微波,可以覆盖大约1/3的地球表面。如果布放3颗等距离同步卫星,全球卫星通信即可实现。他还预言,在1969年前后,人类将登上月球。

历史完全印证了克拉克的预言。1957年10月4日,苏联发射了世界上第一颗人造地球卫星。这不仅标志着航天时代的开始,也预示卫星通信时代即将来临。紧接着,美国于1960年8月12日发射了第一颗通信实验卫星——“回声”1号。这是一颗无源卫星,只能反射来自地面的无线电波,而不能放大和转发信号,因而没有多大的实用价值。第一颗有源通信卫星是美国在1962年12月13日发射的“中继”1号。它在次年3月进行的美、日两国电视转播试验中,及时地转播了肯尼迪遇刺的重大新闻,给人们留下了深刻的印象。1965年4月6日,世界上第一颗商用卫星“晨鸟”号发射成功,它标志着一个崭新的卫星通信时代由此开始。

50多年来,卫星通信有许多出色的表现。首先,卫星转播不仅使报道世界重大事件的新闻在瞬息之间传遍全球,而且还使得分散在世界各地的人可以足不出户,通过电视屏幕同观一场球赛,或同时出席一个国际会议。

卫星通信是由一个地面站向卫星发射信号,经过卫星的放大、变频等处理,再转发给另一个地面站。一般来说,经卫星的这一“跳”,最远的通信距离可达13000千米,三“跳”即可绕地球一周。通信卫星居高临下,因而不受任何地形条件的限制,即使是在荒漠、高山、海洋和岛屿等,只要有一个直径零点几米的“甚小地面站”,就可以通信,而且通信的费用与通信距离无关。有人做过计算,从一颗卫星发射出来的微波信号,能够覆盖地球面积的40%,相当于在地面架设300多个微波接力站。在卫星覆盖区内,任意两点或多点,都可以实现卫星通信。卫星通信的容量也大得惊人,一颗通信卫星可以容纳6万多人同时打越洋电话,并可进行许多路电视通信,还可以进行数据、文字、图像和移动通信。

目前,人类在同步轨道上已经发射了100多颗通信卫星,还有1000多颗移动通信卫星在中低轨道运转。这些通信卫星在许多要求远距离、高质量的通信领域大显身手,它们承担了全球近100%的越洋电视转播和30%以上的国际电报电话业务,奥运会电视转播、香港回归盛典以及许多救援通信,都是卫星通信完成的。卫星通信使人们强烈地感受到地球正在缩小,一个“地球村”的概念也由此而产生。另外,由于卫星通信的崛起,在海上救援活动中,古老的以“SOS”为呼救信号的莫尔斯电报已退出历史舞台,海事卫星后来居上,将人类的海上救援活动推向了一个新的水平。在后来的许多战争中,卫星通信也出尽了风头。

知识点

模拟信号

模拟信号是指信息参数在给定范围内表现为连续的信号。或在一段连续的时间间隔内,其代表信息的特征量可以在任意瞬间呈现为任意数值的信号。模拟信号分布于自然界的各个角落,如每天温度的变化,而数字信号是人为的抽象出来的在时间上不连续的信号。电学上的模拟信号是主要是指幅度和相位都连续的电信号,此信号可以被模拟电路进行各种运算,如放大,相加,相乘等。