『壹』 扩频通讯技术的第六章 扩频通信的主要特点

图4:扩频通信中,频谱宽度与功率谱密度示意
扩频通信具有许多窄带通信难以替代的优良性能, 使得它能迅速推广到各种公用和专用通信网络之中。简单来说主要有以下几项优点:
6.1 抗干扰性强,误码率低
如上所述,扩频通信系统由于在发送端扩展信号频谱,在接收端解扩还原信息,产生了扩频增益,从而大大地提高了抗干扰容限。根据扩频增益不同,甚至在负的信噪比条件下,也可以将信号从噪声的淹没中提取出来,在目前商用的通信系统中,扩频通信是唯一能够工作于负信噪比条件下的通信方式。
各种形式人为的干扰(如电子对抗中)或其他窄带或宽带(扩频)系统的干扰,只要波形、时间和码元稍有差异,解扩后仍然保持其宽带性,而有用信号将被压缩。从图4可以看出,对于脉冲干扰, 由于在信号的接收过程中,它是一个被一次模二相加过程,可以看成是一个被扩频过程,其带宽将被扩展,而有用信号却是一个被二次模二相加过程,是一个解扩过程,其信号被恢复(压缩)后,保证高于干扰。由于扩频系统这一优良性能,其误码率很低,正常条件下可达10-10,最差条件下也可达10-6,远高于普通的微波通信(如通常所说的一点多址)的效果,完全能满足目前国内SCADA系统对通信传输质量的要求。应该说,抗干扰性能强是扩频通信的最突出的优点;
6.2 易于同频使用,提高了无线频谱利用率
无线频谱十分宝贵,虽然从长波到微波都已得到开发利用,仍然满足不了社会的需求。为此,世界各地都设计了频谱管理机构,用户只能使用申请获得的频率,依靠频道划分来防止信道之间发生干扰。
由于扩频通信采用了相关接收这一高技术,信号发送功率极低(<1W,一般为1~100mW),且可工作在信道噪声和热噪声背景中,易于在同一地区重复使用同一频率,也可以与现今各种窄带通信共享同一频率资源;
6.3 抗多径干扰
在无线通信中,抗多径干扰问题一直是难以解决的问题,利用扩频编码之间的相关特性;在接收端可以用相关技术从多径信号中提取分离出最强的有用信号,也可把多个路径来的同一码序列的波形相加使之得到加强,从而达到有效的抗多径干扰。
6.4 扩频通信是数字通信,特别适合数字话音和数据同时传输,扩频通信自身具有加密功能,保密性强,便于开展各种通信业务。扩频通信容易采用码分多址、语音压缩等多项新技术,更加适用于计算机网络以及数字化的话音、图像信息传输;
6.5 扩频通信绝大部分是数字电路,设备高度集成,安装简便,易于维护,也十分小巧可靠,便于安装,便于扩展,平均无故障率时间也很长;
6.6 另外,扩频设备一般采用积木式结构,组网方式灵活,方便统一规划,分期实施,利于扩容,有效地保护前期投资。

『贰』 直接序列扩频是如何实现通信的,它具有哪些特点

一、接序列扩频通信原理

直接序列扩频(DSSS),(Direct seqcuence spread
spectrdm)是直接利用具有高码率的扩频码系列采用各种调制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解码,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10dB以上,从而有效地提高了整机倍噪比。

直接序列扩频的优点:

直扩系统射频带宽很宽。小部分频谱衰落不会使信号频谱严重衰落

多径干扰是由于电波传播过程中遇到各种反射体(高山,建筑物)引起,使接受端接受信号产生失真,导致码间串扰,引起噪音增加。而直扩系统可以利用这些干扰能量提高系统的性能。

直扩系统除了一般通信系统所要求的同步以外,还必须完成伪随机码的同步,以便接受机用此同步后的伪随机码去对接受信号进行相关解扩。直扩系统随着伪随机码字的加长,要求的同步精度也就高,因而同步时间就长。

直扩和跳频系统都有很强的保密性能。对于直扩系统而言,射频带宽很宽,谱密度很低,甚至淹没在噪音中,就很难检查到信号的存在。由于直扩信号的频谱密度很低,直扩系统对其它系统的影响就很小。

直扩系统一般采用相干解调解扩,其调制方式多采用BPSK、DPSK、QPSK、MPSK等调制方式。而跳频方式由于频率不断变化、频率的驻留时间内都要完成一次载波同步,随着跳频频率的增加,要求的同步时间就越短。因此跳频多采用非相干解调,采用的解调方式多为FSK或ASK,从性能上看,直扩系统利用了频率和相位的信息,性能优于跳频。

二、直接序列扩频通信技术特点:

直接序列扩频(Direct Sequence Spread
Spectrum)系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端,用与发端扩展用的相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信息。

直接序列扩频通信开始出现于第二次世界大战,是美军重要的无线保密通信技术。现在直扩技术被广泛应用于包括计算机无线网等许多领域。

抗干扰性强

抗干扰是扩频通信主要特性之一,比如信号扩频宽度为100倍,窄带干扰基本上不起作用,而宽带干扰的强度降低了100倍,如要保持原干扰强度,则需加大100倍总功率,这实质上是难以实现的。因信号接收需要扩频编码进行相关解扩处理才能得到,所以即使以同类型信号进行干扰,在不知道信号的扩频码的情况下,由于不同扩频编码之间的不同的相关性,干扰也不起作用。正因为扩频技术抗干扰性强,美国军方在海湾战争等处广泛采用扩频技术的无线网桥来连接分布在不同区域的计算机网络。

隐蔽性好

因为信号在很宽的频带上被扩展,单位带宽上的功率很小,即信号功率谱密度很低,信号淹没在白噪声之中,别人难以发现信号的存在,加之不知扩频编码,很难拾取有用信号,而极低的功率谱密度,也很少对于其他电讯设备构成干扰。

易于实现码分多址(CDMA)

直扩通信占用宽带频谱资源通信,改善了抗干扰能力,是否浪费了频段?其实正相反,扩频通信提高了频带的利用率。正是由于直扩通信要用扩频编码进行扩频调制发送,而信号接收需要用相同的扩频编码作相关解扩才能得到,这就给频率复用和多址通信提供了基础。充分利用不同码型的扩频编码之间的相关特性,分配给不同用户不同的扩频编码,就可以区别不同的用户的信号,众多用户,只要配对使用自己的扩频编码,就可以互不干扰地同时使用同一频率通信,从而实现了频率复用,使拥挤的频谱得到充分利用。发送者可用不同的扩频编码,分别向不同的接收者发送数据;同样,接收者用不同的扩频编码,就可以收到不同的发送者送来的数据,实现了多址通信。美国国家航天管理局(NASA)的技术报告指出:采用扩频通信提高了频谱利用率。另外,扩频码分多址还易于解决随时增加新用户的问题。

抗多径干扰

无线通信中抗多径干扰一直是难以解决的问题,利用扩频编码之间的相关特性,在接收端可以用相关技术从多径信号中提取分离出最强的有用信号,也可把多个路径来的同一码序列的波形相加使之得到加强,从而达到有效的抗多径干扰。

直扩通信速率高

直扩通信速率可达
2M,8M,11M,无须申请频率资源,建网简单,网络性能好。

『叁』 扩频通信技术的基本工作方式

实现扩频通信的基本工作方式有4种:
1.直接序列扩频(Direct Sequence Spread Spectrum)工作方式(简称DSSS方式);
2.跳变频率(Frequency Hopping)工作方式(简称FH方式);
3.跳变时间(Time Hopping)工作方式(简称TH方式);
4.线性调频(Chirp Molation)工作方式(简称Chirp方式)。目前使用最多、最典型的扩频工作方式是直扩式(DSSS方式),在无线网络的通信中,就是采用这种方式工作的。

『肆』 扩频通信 原理

1,扩展频谱通信的理论基础是:

香农(C.E.Shannon)的信道容量公式,即香农公式:

C=W×Log2(1+S/N)

式中:C--信息的传输速率S--有用信号功率W--频带宽度N--噪声功率。

可以知道当信号的传输速率C一定时,信号带宽W和信噪比S/N是可以互换的,即增加信号带宽可以降低对信噪比的要求,当带宽增加到一定程度,允许信噪比进一步降低,有用信号功率接近噪声功率甚至淹没在噪声之下也是可能的。

2,扩展频谱通信的工作原理:

在发端输入的信息先经信息调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱。展宽后的信号再调制到射频发送出去。

在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩。再经信息解调、恢复成原始信息输出。

(4)无线扩频通信扩展阅读;

扩展频谱通信的特点:

(1)易于重复使用频率,提高了无线频谱利用率

扩频通信发送功率极低,采用了相关接收技术,且可工作在信道噪声和热噪声背景中,易于在同一地区重复使用同一频率,也可与各种窄道通信共享同一频率资源。

(2)抗干扰性强,误码率低

频通信在空间传输时所占用的带宽相对较宽,而接收端又采用相关检测的办法来解扩,使有用宽带信息信号恢复成窄带信号,而把非所需信号扩展成宽带信号,然后通过窄带滤波技术提取有用的信号。

(3)隐蔽性好,对各种窄带通信系统的干扰很小

由于扩频信号在相对较宽的频带上被扩展了,单位频带内的功率很小,信号湮没在噪声里,一般不容易被发现。

(4)适合数字话音和数据传输,以及开展多种通信业务

扩频通信一般都采用数字通信、码分多址技术,适用于计算机网络,适合于数据和图像传输。

(5)安装简便,易于维护

扩频通信设备是高度集成,采用了现代电子科技的尖端技术,因此,十分可靠、小巧,大量运用后成本低,安装便捷,易于推广应用。