Ⅰ 光纤通信的原理图

光纤通信也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。

2.光纤通信原理—组成部分
最基本的光纤通信系统由光发信机、光收信机、光纤线路、中继器以及无源器件组成。其中光发信机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光收信机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

(1)光发信机----由光源、驱动器和调制器组成,实现电/光转换的光端机。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。

(2)光收信机----由光检测器和光放大器组成,实现光/电转换的光端机。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。

(3)光纤线路----其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器----由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。

(5)无源器件----包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。

Ⅱ 怎么用CAD画通信线路图

1、不过首先要做许多准备工作,画出各种元器件符号(甚至封装),做成【块】重复使用,相当于protel里的元件库、封装库,只不过CAD本身是没有这个库的(CAD最大的优势是精确制图,机械加工用最能发挥优势);
2、画图块以及连线,请参照GB-T 4728电气图用图形符号,画图时尽量选择一定【模数】,比如所有节点尺寸都是2.5的倍数,可以使图面规范化、标准化,图面也更美观;
3、即使要画电路板图,也可以,不过要注意元件(尤其是集成电路)的引脚间距多以英制为单位,实际公制尺寸如2.54mm,另外,连线可以用【多义线】绘制,选择合适的宽度;
4、作图一定养成按1:1比例绘制的习惯,即便是工程施工图也是这样(后期出图可选任意比例);
5、元器件、部件、线路、标注,以及施工图的建筑平面、建筑构件等统统放在不同的【图层】中,便于后期编辑、修改;
6、使用绘图的【捕捉】功能,精确定位。

Ⅲ CAN总线协议通信的数据是什么格式,及其显示的波形图是怎样的

控制器局域网CAN(Controller Area Network)是一种多主方式的串行通信总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。CAN在汽车上的应用,具有很多行业标准或者是国际标准,比如国际标准化组织(ISO)的ISO11992、ISO11783以及汽车工程协会(Societyof Automotive Engigeers)的SAE J1939。CAN总线已经作为汽车的一种标准设备列入汽车的整车设计中。 CAN通信协议规定了4种不同的帧格式,即数据帧、远程帧、错误帧和超载帧。基于以下几条基本规则进行通信协调:总线访问、仲裁、编码/解码、出错标注和超裁标注。CAN遵从OSI模型。按照OSI基准模型只有三层:物理层、数据链路层和哀告层,但应用层尚需用户自己定义。CAN总线作为一种有效支持分布式控制或实时控制的串行通信网络,应用范围遍及从高速网络到低成本的多线路网络。如:CAN在汽车中的发动机控制部件、ABS、抗滑系统等应用中的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电器系统中,例如电气窗口、灯光聚束、座椅调节等,以替代所需要的硬件连接。其传输介制裁为双绞线,通信速率最高可达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备数最多可达110个。CAN为多主工作方式,通信方式灵活,无需站地址等节点信息,采用非破坏性总线仲裁技术,满足实时要求。另外,CAN采用短帧结构传输信号,传输时间短,具有较强的抗干扰能力。 CAN总线与其它通信协议的不同之处主要有两方面:一是报文传送不包含目标地址,它是以全网广播为基础,各接收站根据报文中反映数据性质的标识符过滤报文,其特点是可在线上网下网、即插即用和多站接收;另外一个方面就是特别强化了数据安全性,满足控制系统及其它较高数据要求系统的需求。 在现代汽车的设计中,CAN总线已经成为构建汽车网络的一种趋势;而汽车网络作为直接与汽车内部各个ECU连接并负责命令的传递、数据的发送及共享,其可靠性和稳定性与整车的性能紧密相关。本文的设计开发是在基于试验条件下搭建的仿真平台,节点之间的通信是通过对等的CAN通信节点进行的。试验表明其运行性能稳定可靠,但实用化仍需要进一步的研究和改进,且程序的通信处理能力、纠错和容错能力有待进一步的提高. 比如: 把CAN总线融合到嵌入式平台中,在其ARM-EP9315和ARM-S3C2440嵌入式平台上都做到了CAN总线功能的实现!ARM嵌入式控制平台,具有开放、集成度高、尺寸小、可扩展性强、低功耗等特点,非常适合与数字家电、车载设备、通信终端、网络设备等的应用。如今有了CAN总线的实现,使其在此方面的应用更为有效!
求点赞

Ⅳ 求通信网络架构图

拓扑结构图是指由网络节点设备和通信介质构成的网络结构图。网络拓扑定义了各种计版算机、打印机、网络权设备和其他设备的连接方式。换句话说,网络拓扑描述了线缆和网络设备的布局以及数据传输时所采用的路径。网络拓扑会在很大程度上影响网络如何工作。网络拓扑包括物理拓扑和逻辑拓扑。物理拓扑是指物理结构上各种设备和传输介质的布局。物理拓扑通常有总线型、星型、环型、树型、网状型等几种。基本术语1.节点节点就是网络单元。网络单元是网络系统中的各种数据处理设备、数据通信控制设备和数据终端设备。节点分为:转节点,它的作用是支持网络的连接,它通过通信线路转接和传递信息;访问节点,它是信息交换的源点和目标。2.链路链路是两个节点间的连线。链路分“物理链路”和“逻辑链路”两种,前者是指实际存在的通信连线,后者是指在逻辑上起作用的网络通路。链路容量是指每个链路在单位时间内可接纳的最大信息量。3.通路通路是从发出信息的节点到接收信息的节点之间的一串节点和链路。也就是说,它是一系列穿越通信网络而建立起的节点到节点的链路.

Ⅳ 通信传输设备上下端各连接什么设备,基站内设备间怎么连接的示意图

传输的组网主要是环状组网,为了保护业务,所以传输设备一般都是有2个方向的链接,2个方向都是链接的相邻两个站的传输设备,也有链状组网,就是几个站的传输设备链接成链状,基站内主要就只有无线设备和传输设备,无线设备直接链接到传输设备上,目前一般都是已2M线链接,也有用网线链接的,也有用尾纤链接的,不同的业务需求,不同设备类型,用不同的链接方式。画图就太麻烦了,你先将就着看看吧。

Ⅵ 说明通信系统的结构及其通信过程

实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。以基本的点对点通信为例,通信系统的组成(通常也称为一般模型)如图 1-1 所示。 图 1-1 通信系统的一般模型 图中,信源(信息源,也称发终端)的作用是把待传输的消息转换成原始电信号,如电话系统中电话机可看成是信源。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式,。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。
发送设备的基本功能是将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式;对传输数字信号来说,发送设备又常常包含信源编码和信道编码等。
信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。
在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。
信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。
图 1-1 给出的是通信系统的一般模型,按照信道中所传信号的形式不同,可进一步具体化为模拟通信系统和数字通信系统。 1.2.2 模拟通信系统 我们把信道中传输模拟信号的系统称为模拟通信系统。模拟通信系统的组成可由一般通信系统模型略加改变而成,如图 l-2 所示。这里,一般通信系统模型中的发送设备和接收设备分别为调制器、解调器所代替。
对于模拟通信系统,它主要包含两种重要变换。一是把连续消息变换成电信号(发端信息源完成)和把电信号恢复成最初的连续消息(收端信宿完成)。由信源输出的电信号(基带信号)由于它具有频率较低的频谱分量,一般不能直接作为传输信号而送到信道中去。因此,模拟通信系统里常有第二种变换,即将基带信号转换成其适合信道传输的信号,这一变换由调制器完成;在收端同样需经相反的变换,它由解调器完成。经过调制后的信号通常称为已调信号。已调信号有三个基本特性:一是携带有消息,二是适合在信道中传输,三是频谱具有带通形式,且中心频率远离零频。因而已调信号又常称为频带信号。 必须指出,从消息的发送到消息的恢复,事实上并非仅有以上两种变换,通常在一个通信系统里可能还有滤波、放大、天线辐射与接收、控制等过程。对信号传输而言,由于上面两种变换对信号形式的变化起着决定性作用,它们是通信过程中的重要方面。而其它过程对信号变化来说,没有发生质的作用,只不过是对信号进行了放大和改善信号特性等,因此,这些过程我们认为都是理想的,而不去讨论它。1.2.3 数字通信系统 信道中传输数字信号的系统,称为数字通信系统。数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。
1. 数字频带传输通信系统
数字通信的基本特征是,它的消息或信号 具有 “离散”或“数字”的 特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。
另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行 人为 “扰乱”( 加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致 为 “位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个 重要问题。
综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。
需要说明的是,图中调制器 / 解调器、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。
2. 数字基带传输通信系统
与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。 图中基带信号形成器可能包括编码器、加密器以及波形变换等,接收滤波器亦可能包括译码器、解密器等。
3. 模拟信号数字化传输通信系统
上面论述的数字通信系统中,信源输出的信号均为数字基带信号,实际上,在日常生活中大部分信号(如语音信号)为连续变化的模拟信号。那么要实现模拟信号在数字系统中的传输,则必须在发端将模拟信号数字化,即进行 A/D 转换;在接收端需进行相反的转换,即 D/A 转换。实现模拟信号数字化传输的系统如图 1-5 所示。1.2.4 数字通信的主要特点 目前,无论是模拟通信还是数字通信,在不同的通信业务中都得到了广泛的应用。但是,数字通信的发展速度已明显超过模拟通信,成为当代通信的主流。与模拟通信相比,数字通信更能适应现代社会对通信技术越来越高的要求。 1. 数字通信的主要优点
( 1 ) 抗干扰能力强
由于在数字通信中,传输的信号幅度是离散的,以二进制为例,信号的取值只有两个,这样接收端只需判别两种状态。信号在传输过程中受到噪声的干扰,必然会使波形失真,接收端对其进行抽样判决,以辨别是两种状态中的哪一个。只要噪声的大小不足以影响判决的正确性,就能正确接收(再生)。而在模拟通信中,传输的信号幅度是连续变化的,一旦叠加上噪声,即使噪声很小,也很难消除它。
数字通信抗噪声性能好,还表现在微波中继通信时,它可以消除噪声积累。这是因为数字信号在每次再生后,只要不发生错码,它仍然像信源中发出的信号一样,没有噪声叠加在上面。因此中继站再多,数字通信仍具有良好的通信质量。而模拟通信中继时,只能增加信号能量(对信号放大),而不能消除噪声。
( 2 ) 差错可控
数字信号在传输过程中出现的错误(差错),可通过纠错编码技术来控制,以提高传输的可靠性。
( 3 ) 易加密
数字信号与模拟信号相比,它容易加密和解密。因此,数字通信保密性好。
( 4 ) 易于与现代技术相结合
由于计算机技术、数字存贮技术、数字交换技术以及数字处理技术等现代技术飞速发展,许多设备、终端接口均是数字信号,因此极易与数字通信系统相连接。
2. 数字通信的缺点
相对于模拟通信来说,数字通信主要有以下两个缺点:
( 1 ) 频带利用率不高
系统的频带利用率,可用系统允许最大传输带宽(信道的带宽)与每路信号的有效带宽之比来表征,即 ( 1-1 ) 式中, 为系统允许最大频带宽度; 及为每路信号的频带宽度; 为系统在其带宽内最多能容纳(传输)的话路数。 值愈大,系统利用率愈高。
数字通信中,数字信号占用的频带宽,以电话为例,一路模拟电话通常只占据 4kHz 带宽,但一路接近同样话音质量的数字电话可能要占据 20 ~ 60kHz 的带宽。因此,如果系统传输带宽一定的话,模拟电话的频带利用率要高出数字电话的 5 ~ 15 倍。
( 2 ) 系统设备比较复杂
数字通信中,要准确地恢复信号,接收端需要严格的同步系统,以保持收端和发端严格的节拍一致、编组一致。因此,数字通信系统及设备一般都比较复杂,体积较大。
不过,随着新的宽带传输信道(如光导纤维)的采用、窄带调制技术和超大规模集成电路的发展,数字通信的这些缺点已经弱化。随着微电子技术和计算机技术的迅猛发展和广泛应用,数字通信在今后的通信方式中必将逐步取代模拟通信而占主导地位

Ⅶ 通信传输网拓扑问题!如何通过光缆路由图组网络拓扑图或是有什么原则!

光缆也是传输的一部分,传输设备组网一般得分个汇聚和接入的。汇聚一般都得成环、接入就看现有资源以及运营商成本等等一些条件了。一般设备拓扑都是按光缆和业务需求来走的,而光缆的话就按业务需求和地理环境了。现网有很多支链的话,最先考虑成环的就是那些长支链,且按照现有光缆资源以及允许新建的光缆考虑成环,能在提供业务保护和新建光缆2个方面找到平衡点就行,那个新建光缆的话就看你们优化给新建光缆预算多少了。