⑴ “量子通信”的原理及其意义是

  • 量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。

  • 量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,是21世纪国际量子物理和信息科学的研究热点。

⑵ 量子通信是什么

量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式,是量子论和信息论相结合的新研究领域,主要涉及量子密码通信、量子远程传态和量子密集编码等。

所谓量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式,是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。

光量子通信主要基于量子纠缠态的理论,使用量子隐形传态(传输)的方式实现信息传递。根据实验验证,具有纠缠态的两个粒子无论相距多远,只要一个发生变化,另外一个也会瞬间发生变化,利用这个特性实现光量子通信的过程如下:事先构建一对具有纠缠态的粒子,将两个粒子分别放在通信双方,将具有未知量子态的粒子与发送方的粒子进行联合测量(一种操作),则接收方的粒子瞬间发生坍塌(变化),坍塌(变化)为某种状态,这个状态与发送方的粒子坍塌(变化)后的状态是对称的,然后将联合测量的信息通过经典信道传送给接收方,接收方根据接收到的信息对坍塌的粒子进行幺正变换(相当于逆转变换),即可得到与发送方完全相同的未知量子态。

经典通信较光量子通信相比,其安全性和高效性都无法与之相提并论。安全性-量子通信绝不会“泄密”,其一体现在量子加密的密钥是随机的,即使被窃取者截获,也无法得到正确的密钥,因此无法破解信息;其二,分别在通信双方手中具有纠缠态的2个粒子,其中一个粒子的量子态发生变化,另外一方的量子态就会随之立刻变化,并且根据量子理论,宏观的任何观察和干扰,都会立刻改变量子态,引起其坍塌,因此窃取者由于干扰而得到的信息已经破坏,并非原有信息。高效,被传输的未知量子态在被测量之前会处于纠缠态,即同时代表多个状态,例如一个量子态可以同时表示0和1两个数字, 7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的。

这里进一步解释一下量子纠缠。量子纠缠可以用“薛定谔猫”来帮助理解:当把一只猫放到一个放有毒物的盒子中,然后将盒子盖上,过了一会问这个猫现在是死了,还是活着呢?量子物理学的答案是:它既是死的也是活的。有人会说,打开盒子看一下不就知道了,是的,打开盒子猫是死是活确实就会知道,但是按量子物理的解释:这种死或者活着的状态是人为观察的结果,也就是人的宏观干扰使得猫变成了死的或者活的了,并不是盒子盖着时的真实状态,同样,微观粒子在不被“干扰”之前就一直处于“死”和“活”两种状态的叠加,也可以说是它既是“0”也是“1”。

量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的“幽灵”——量子纠缠的实证说起。

由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。

1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。 从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。 量子纠缠证实了爱因斯坦的幽灵——超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。

在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(Quantum Teleportation)的概念。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)” ——量子纠缠效益开始真正发挥其真正的威力。

1993年,在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。

1997年在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。

经过二十多年的发展,量子通信这门学科已逐步从理论走向实验,并向实用化发展,主要涉及的领域包括:量子密码通信、量子远程传态和量子密集编码等。