⑴ 光通讯的原理与应用

【光通信原理】光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
光通信正是利用了全反射原理,当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线,子午光线是位于子午面上的光光线,而斜射光线是不经过光纤轴线传输的光线。
【全光网络】未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。
骨干网是对速度、距离和容量要求最高的一部分网络,将ASON技术应用于骨干网,是实现光网络智能化的重要一步,其基本思想是在过去的光传输网络上引入智能控制平面,从而实现对资源的按需分配。DWDM也将在骨干网中一显身手,未来有可能完全取代SDH,从而实现IPOVERDWDM。
城域网将会成为运营商提供带宽和业务的瓶颈,同时,城域网也将成为最大的市场机遇。目前基于SDH的MSTP技术成熟、兼容性好,特别是采用了RPR、GFP、LCAS和MPLS等新标准之后,已经可以灵活有效地支持各种数据业务。
对接入网来说,FTTH(光纤到户)是一个长远的理想解决方案。FTTx的演进路线将是逐渐将光纤向用户推近的过程,即从FTTN(光纤到小区)到FTTC(光纤到路边)和FTTB(光纤到公寓小楼)乃至最后到FTTP(光纤到驻地)。当然这将是一个很长的过渡时期,在这个过程中,光纤接入方式还将与ADSL/ADSL2+并存。
基于上述全光网络构架有很多核心技术,它们将引领光通信的未来发展。ASON、FTTH、DWM、RPR这四项目前是光通信行业最重要的技术。
【光通信技术】
1、ASON
无论从国内研发进展、试商用情况,还是从国外的发展经验来看,国内运营商在传送网中大规模引入ASON技术将是必然的趋势。ASON(,智能光网络)是一种光传送网技术。目前的产品和市场状况表明,ASON技术已经达到可商用的成熟程度,随着3G、NGN的大规模部署,业务需求将进一步带动传送网技术的发展,预计2007年ASON将得到更加广泛的商用。
2006年各大主要设备提供商华为、中兴、烽火、Lucent等已经推出了其可商用的ASON产品。中国电信、中国网通、中国移动、中国联通和中国铁通陆续开展了ASON的应用测试和小规模商用。
ASON在国外成功商用的经验表明,ASON将在骨干传送网发挥不可替代的作用。例如,AT&T的140个节点覆盖美国的骨干传送网;BT组建21CN网,目前已建40个ASON节点;Vodafone的131个节点覆盖英国的ASON骨干传送网,等等。
然而,目前ASON在路由、自动发现、ENNI接口等几方面的标准化工作还不完善,这成为制约ASON技术发展和商用的重要因素。未来我国将参与更多的ASON标准化工作,同时,ASON的标准化,尤其是其中ENNI的标准化,将在近年内取得突破性进展。
2、FTTH
FTTH(FiberToTheHome,光纤到户)是下一代宽带接入的最终目标。目前,实现FTTH的技术中,EPON将成为未来我国的主流技术,而GPON最具发展潜力。
EPON采用Ethernet封装方式,所以非常适于承载IP业务,符合IP网络迅猛发展的趋势。目前,国家已经将EPON作为“863”计划重大项目,并在商业化运作中取得了主动权。
GPON比EPON更注重对多业务的支持能力,因此更适合未来融合网络和融合业务的发展。但是它目前还不够成熟并且价格偏高,还无法在我国大规模推广。
我国的FTTH还处于市场启动阶段,离大规模的商业部署还有一段距离。在未来的产业化发展中,运营商对本地网“最后一公里”的垄断是制约FTTH发展的重要因素,采取“用户驻地网运营商与房地产开发商合作实施”的形式,更有利于FTTH产业的健康发展。从日本、美国、欧洲和韩国等国家的FTTH发展经验来看,FTTH的核心推动力在于网络所提供的丰富内容,而政府对应用和内容的监控和管理政策也会制约FTTH的发展。
3、WDM
WDM突破了传统SDH网络容量的极限,将成为未来光网络的核心传输技术。 按照通道间隔的不同,WDM(,波分复用)可以分为DWDM(密集波分复用)和CWDM(稀疏波分复用)这两种技术。DWDM是当今光纤传输领域的首选技术,但CWDM也有其用武之地。
2006年,烽火、华为等设备厂商都推出了自己的DWDM系统,国内运营商也开展了相关的测试和小规模商用。未来DWDM将在对传输速率要求苛刻的网络中发挥不可替代的作用,如利用DWDM来建设骨干网等。
相对于DWDM,CWDM具有成本低、功耗低、尺寸小、对光纤要求低等优点。未来几年,电信运营商将会严格控制网络建设成本,这时CWDM技术就有了自己的生存空间,它适合快速、低成本多业务网络建设,如应用于城域和本地接入网、中小城市的城域核心网等。
4、RPR
弹性分组环(ResilientPacketRing,RPR)将成为未来重要的光城域网技术。近年来许多国内外传输设备厂商都开发了内嵌RPR功能的MSTP设备,RPR技术得到了大量芯片制造商、设备制造商和运营商的支持和参与。
在标准化方面,IEEE802.17的RPR标准已经被整个业界认可,而国内的相关标准化工作还在进行中。未来RPR将主要应用于城域网骨干和接入方面,同时也可以在分散的政务网、企业网和校园网中应用,还可应用于IDC和ISP之中。

⑵ 光通信的原理是什么

光通信的原理是光反射原理。现代的光纤通信就是运用光反射原理,把光的全反射限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递的。直到今天,信号灯、旗语、望远镜等目视光通信的手段仍在使用,但是这一切还是最原始的光通信,不能算作是真正的光通信。

(2)光通信主要研究什么扩展阅读:

我国十分重视光通信器件的研发,通过国家高新技术发展计划安排专题,组织技术攻关,跟踪国际先进技术等措施的实施,极大地推动了光通信器件的研究开发和产业化工作。随着光器件产业逐渐向中国转移,光通信行业基础设施建设进一步加快,中国已成为全球光电元器件的重要生产销售基地。

⑶ 光电子,微纳光子,光通信都研究什么的呀及前景求科普

你这些都是光电方面的专业,我是微电子的,还算对你这个有点了解,举报本科出去就是光纤,激光器类工作(如光路工程师这种或者做光学检测仪器),如果学得好可以去做光学设计,可以去一些做成像、照明方向的企业
。前景看你什么大学的,普通大学,就业在本专业还是不容易的。

光通讯的话,国内现在都是光通讯维护方面的

下面给你点人人转的资料,你看看吧。
一、前提

1、英语是一道坎,英语是翅膀,没有翅膀只能走路,有了翅膀想飞到哪就能
飞到哪。四级要过(没过千万别自杀),六级最好

2、女生英语好,综合能力好,可以从事综合类岗位,我院女生就业五花八门,
大多去外企,和专业有些接近的话有质量管理员QS等,可以考考人力资源的认证。

3、说到底个人素质是关键

二、行业之选

1、通信方面(监理、服务、建设、技术,通信行业目前薪酬水平较好)

学好课程:通信原理+物电的通信工程两门专业课:移动通信和交换网络

考认证:网络工程师(便宜,有这个找工作没问题),CCNA(初级,含金量大)和C
CNP(中级),HCNE(华为,可以到本部计算机软件学院考)计算机三级考试

2、电子类

学好课程:模电、数电、单片机、电路基础等,自学protet和pcb等

3、计算机方面和软件开发

学好课程:计算机网络和微机原理等。

最好要有项目经验 懂程序:C语言

通信和计算机不分家。

4、光电子企业:

学好课程:光电子学、光电技术、光纤通信、工程光学(几何和物理光学)

光电有很多小企业,目前收入稍低,深圳东莞佛山多,也有个别企业很好,但是难进


理论基础扎实,有一些项目经验。学院的科研立项有用。

三、相近职位之选

1.技术

2.技术管理

3市场营销

4.其他

备注:以上行业是光学相近的

有20%左右的同学就业的行业和专业没有联系,譬如保险、投资、贸易等,非常正常

⑷ 可见光通信技术的我国可见光通信研究

经工业和信息化部测试认证,我国“可见光通信系统关键技术研究”近日获得重大突破,实时通信速率提高至50Gbps(比特每秒),相当于0.2秒即可完成一部高清电影的下载。
可见光通信是利用半导体照明(LED灯)的光线实现“有光照就能上网”的新型高速数据传输技术。可见光通信技术绿色低碳、可实现近乎零耗能通信,还可有效避免无线电通信电磁信号泄露等弱点,快速构建抗干扰、抗截获的安全信息空间。
我国信息领域著名专家、中国工程院院士邬江兴介绍说,目前,全球大约拥有440亿盏灯具构成的照明网络,数百亿的LED照明设备与其它设备融合将构筑一个巨大的可见光通信网。可以设想,未来实现大规模可见光通信后,每盏灯都可以当做一个高速网络热点,人们等车的时候在路灯下就可下载几部电影,在飞机、高铁上也可借助LED光源无线高速上网,满足室内网物联网、车联网、工业4.0、安全支付、智慧城市、国防通信、武器装备、电磁敏感区域等网络末端无线通信需求,为互联网+提供一种崭新的廉价接入方法。
邬江兴预测,在未来数十年内,信息的传输量将超出现有无线电频谱的承载能力,可见光通信技术可有效突破无线电频谱资源严重匮乏的困局,是具有广阔应用前景的下一代无线通信技术之一,可形成万亿级年产值的战略性新兴产业。
高速传输一直是可见光通信领域研究的焦点课题之一,解放军信息工程大学于宏毅研发团队采用光学和电学相协同的处理方法,突破了可见光空间通道互干扰高效抑制等关键技术,进入集成化、微型化设计与实现阶段。这所大学是国内较早从事可见光通信技术研发的科研单位,2013年牵头承担了我国首个可见光863计划项目,并组建了“中国可见光通信产业技术联盟”。经过3年多的科技攻关,先后研发成功“可见光点播电视业务”“可见光新型无线广播”“可见光精确定位”等应用示范系统。
LED无线通信的研究在日本首先开展
将LED照明灯组成可见光无线通信系统的研究工作,在日本首先开展,并得到日本政府的重视。在2006-11-28发布的科技日报报道:“日本总务省计划与NTT研究所及NEC公司等联手,共同开发一种利用照明灯光传输高速信息的“可见光通信”系统。日本政府将把这一技术作为下一代宽带网普及,预计在5年内实用化“。
室内白光LED无线通信的研究在日本首先开展。日本大学的日本KEIO大学的Tanaka等人和SONY计算机科学研究所的Haruyama在2000年提出了利用LED照明灯作为通信基站进行信息无线传输的室内通信系统[4]。他们以Gfeller和Bapst的室内光传输信道为传输模型,将信道分为直接信道和反射信道两部分,并认为LED光源满足朗伯(Lambertian)照射形式,且以强度调制直接检测(IM-DD)为光调制形式进行了建模仿真,获得了数据率、误码率以及接收功率等之间的关系。认为当传送数据率在10Mbps以下的系统是可行的,码间干扰(InterSymbol Interference, ISI)和多径效应是影响系统性能的两大因素。2001年,Tanaka等人在原来的基础上分别采用OOK_RZ调制方式与OFDM调制方式对系统进行了仿真[6],结果表明::当传送数据率在100Mbps以下时这两种调制技术都是可行的,当数据率大于100Mbps时,OFDM调制技术优于OOK_RZ调制技术。
Tanaka和Komine等人的具体分析
2002年, Tanaka和Komine等人对LED可见光无线通信系统展开了具体分析[7],包括光源属性信道模型、噪声模型、室内不同位置的信噪比分布等,求出了系统所需的LED单元灯的基本功率要求,并分别以OOK_RZ、OOK_NRZ、m-PPM调制方式进行仿真分析,得到了不同条件下的误码率大小。同年Komine等研究了由墙壁反射引起的多径效应对可见光无线系统造成的影响,分别以OOK、2-PPM、4-PPM、8-PPM调制方式进行仿真,结果表明:在数据率小于60Mbps,接收视场角小于50度的条件下,采用8-PPM调制方式可有效克服墙壁反射引起的多径效应。以后, Komine等继续对LED单元灯的设计布局、可见光传播信道(分直达信道和反射信道两部分)、室内人员走动导致的反射阴影、墙壁反射光,码间干扰对系统性能的影响等展开研究[8],并得出了不同接收视场角和不同数据传送率下各因素对系统性能的影响曲线。同年,Komine等提出了一套结合电力线载波通信和LED可见光通信的数据传输系统[9]。2005年, Komine等利用基于最小均方误差算法的自适应均衡技术来克服码间干扰(ISI) [10]。仿真表明在数据率为400Mbps以下时,FIR均衡器和DFE均衡器都可有效减少ISI的影响,当数据率高于400Mbps时,DFE均衡器更能有效克服ISI。
应用前景非常看好
国内在这方面的研究刚刚起步,暨南大学光电工程系的陈长缨教授对LED发光特性、室内通信链路和信道模型进行了初步的研究 [11]。
总之,LED照明光无线通信在国外也还出在起步和摸索阶段,但其应用前景非常看好,不仅可以用于室内无线接入,还可以为城市车辆的移动导航及定位提供一种全新的方法。汽车照明灯基本都采用LED灯,可以组成汽车与交通控制中心、交通信号灯至汽车、汽车至汽车的通信链路。这也是LED可见光无线通信在智能交通系统的发展方向。

⑸ 光电子技术科学专业的研究领域

研究领域是信息光学与光电子技术相结合的应用基础学科,包括:现代光学与光回电子学、光通信、光信息处理答、声光信息处理与光通信技术和激光技术等。主要有三个研究方向,即光信息存储与处理、光通信技术与器件、以及激光超短脉冲与变频技术,均处于国内先进或领先的水平;代表性成果有新型超高密度体全息存储、声电光器件、可调谐激光器。目前承担了1项973国家重点基础研究项目、4项国家自然科学基金项目、1项国家部委项目和5项北京市科委教委项目,研究经费充足,同时与国际学术界有较为广泛的学术交流。 本学科所依托的光学学科于1986年获得国务院授权的博士学位授予权, 光学工程学科于2000年获得博士学位授予权。学科部可同时招收理学 (光学)和工学 (光学工程)的博士、硕士研究生。在211工程九五期间的重点学科建设中,作为激光应用技术重点学科的一部分,学科的学术水平有了很大的提升,并且实验室建设成效显著,并且于2001年与激光工程研究院整合,进入了光学国家重点学科行列。

⑹ 光通信 是什么

光通信(Optical Communication)是以光波为载波的一种通信方式。我国使用光通信技术由来已久,比如古代的边疆遇到敌军入侵就在烽火台点火报警。今天,主要指的是利用光纤通信的技术。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)。
宽带城域网(BMAN)是我国信息化建设的热点,DWDM(密集波分复用)的巨大带宽和传输数据的透明性,无疑是当今光纤应用领域的首选技术。然而,MAN等具有传输距离短、拓扑灵活和接入类型多等特点,如照搬主要用于长途传输的DWDM,必然成本过高;同时早期DWDM对MAN等灵活多样性也难以适应。面对这种低成本城域范围的宽带需求,CWDM(粗波分复用)技术应运而生,并很快成为一种实用性的设备。
对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为“宽带接入最终目标”的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求,随之FTTH的部署也提上了日程。无独有偶,ASON对传输网络控制灵活,可为企业客户提供个性化服务,不少运营商为发展和维系企业客户,不惜重金投资建设ASON。
未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。骨干网和城域网已经基本实现了全光化,部分网络发展较快的区域,也实现了部分的接入层的光进铜退。

⑺ 谁知道光通信细分为那些研究方向呀

光发送端:半导体激光器。
光有源器件:放大器之类。
无源器件:耦合器之类。
光收发模块。
接收解调端:PD,相干接收方案,相干光通信(现在比较热)。
发送端高速光通信码型:PMD-DQPSK,OFDM(现在也比较热)。
底层编码技术
光纤光缆
传送网:SDH,MSTP,PTN,OTN等
波分系统。
全光网:ASON等
当然还有些什么硅光子,纳米光子比较前沿的。。

⑻ 自由空间光通信技术的自由空间光通信研究重点

自由空间光通信的安全保密性较好,因为红外激光的波束窄且不可见,很难在空中发现其通信链路。同时,激光束定向性好,如果想截取,一般需要在链路中插入,这是很难做到的,而即使被截取,用户也会发现,因为链路被中断。因此,自由空间光通信系统比微波系统安全得多。但是经分析论证,由于自由空间光通信信道的开放性,窃听信号而又不阻断光束的传播,也是可以做到的。所以深入研究自由空间光通信的保密方法和技术是十分必要的。