1. 利用MATLAB软件,对"通信原理“,”数字信号处理“或者是”信号与系统“课程中的其中某一个知识点进行仿真

clc;clear;close all;
%四元数法估计,一阶近似算法。

ts=0.1;%采样时间

Re=6378160;
wie=7.2921151467e-5;
f=1/298.3;
g0=9.7803;
deg=pi/180;
min=deg/60;
sec=min/60;
hur=3600;
dph=deg/hur;
Xk=zeros(18,1);
Pk=diag([min,min,min,0.5,0.5,0.5,30/Re,30/Re,30,0.1*dph,0.1*dph,0.1*dph,0.1*dph,0.1*dph,0.1*dph,1.e-3,1.e-3,1.e-3].^2);
Qk=1e-6*diag([0.01,0.01,0.01,0.01,0.01,0.01,0.9780,0.9780,0.9780]).^2;
Rk=diag([1e-5,1e-5,10.3986]).^2;
GPS_Sample_Rate=10;
Runs=10;
Tg=3600;
Ta=1800;
%读取数据
wbibS=dlmread('dataWbibN.txt');
fbS=dlmread('dataFbibN.txt');
posS=dlmread('dataPos.txt');
vtetS=dlmread('dataVn.txt');
% p_gps=dlmread('dataGPSposN.txt');

%统计矩阵初始化
[mm,nn]=size(posS);
posSta=zeros(mm,nn);
vtSta=posSta;
attSta=posSta;

posC(:,1)=posS(:,1); %位置向量初始值
vtC(:,1)=vtetS(:,1); %速度向量初始值
attC(:,1)=[ 0;
0;
0.3491]; %姿态解算矩阵初始值

% Qk=1e-6*diag([0.01,0.01,0.01,0.01,0.01,0.01,0.9780,0.9780,0.9780]).^2;%系统噪声方差矩阵
% Rk=diag([1e-5,1e-5,10.3986]).^2; %测量噪声方差
%
% Tg = 3600*ones(3,1); %陀螺仪Markov过程相关时间
% Ta = 1800*ones(3,1); %加速度计Markov过程相关时间
%
% GPS_Sample_Rate=10; %GPS采样率太高效果也不好

StaNum=10;%重复运行次数,用于求取统计平均值

for OutLoop=1:StaNum

% Pk = diag([min,min,min, 0.5,0.5,0.5, 30./Re,30./Re,30, 0.1*dph,0.1*dph,0.1*dph, 0.1*dph,0.1*dph,0.1*dph, 1.e-3,1.e-3,1.e-3].^2); %初始估计协方差矩阵
% Xk = zeros(18,1); %初始状态
%%
N=size(posS,2);
% j=1;
k=1:N-1
if mod (k,10)==0
[ E_att, E_pos, E_vn, Xk, Pk ] = kalman_GPS_INS_correct( Xk, Qk, Pk, F, G, H, ts ,Zk,Rk )
else
for k=1:N-1
si=sin(attC(1,k));ci=cos(attC(1,k));
sj=sin(attC(2,k));cj=cos(attC(2,k));
sk=sin(attC(3,k));ck=cos(attC(3,k));
%k时刻姿态矩阵
M=[cj*ck+si*sj*sk, ci*sk, sj*ck-si*cj*sk;
-cj*sk+si*sj*ck, ci*ck, -sj*sk-si*cj*ck;
-ci*sj, si, ci*cj]; %即Cnb矩阵
q_1=[ sqrt(abs(1.0+M(1,1)+M(2,2)+M(3,3)))/2.0;
sign(M(3,2)-M(2,3))*sqrt(abs(1.0+M(1,1)-M(2,2)-M(3,3)))/2.0;
sign(M(1,3)-M(3,1))*sqrt(abs(1.0-M(1,1)+M(2,2)-M(3,3)))/2.0;
sign(M(2,1)-M(1,2))*sqrt(abs(1.0-M(1,1)-M(2,2)+M(3,3)))/2.0];
fn(:,k)=M*fbS(:,k);%比力的坐标变换
%捷联惯导解算
wnie=wie*[0;cos(posC(1,k));sin(posC(1,k))];%地球系相对惯性系的转动角速度在导航系(地理系)的投影
%计算主曲率半径
Rm=Re*(1-2*f+3*f*sin(posC(1,k))^2)+posC(3,k);
Rn=Re*(1+f*sin(posC(1,k))^2)+posC(3,k);

wnen=[-vtC(2,k)/(Rm+posC(3,k));vtC(1,k)/(Rn+posC(3,k));vtC(1,k)*tan(posC(1,k))/(Rn+posC(3,k))];%导航系相对相对地球系的转动角速度在导航系的投影
g=g0+0.051799*sin(posC(1,k))^2-0.94114e-6*posC(3,k);%重力加速度
gn=[0;0;-g];%导航坐标系的重力加速度

wbnbC(:,k)=wbibS(:,k)-M\(wnie+wnen); %姿态角转动角速率计算
q=1.0/2*qmul(q_1,[0;wbnbC(:,k)])*ts+q_1; %姿态四元数更新
q=q/sqrt(q'*q);%四元数归一化

%姿态角更新
q11=q(1)*q(1);q12=q(1)*q(2);q13=q(1)*q(3);q14=q(1)*q(4);
q22=q(2)*q(2);q23=q(2)*q(3);q24=q(2)*q(4);
q33=q(3)*q(3);q34=q(3)*q(4);
q44=q(4)*q(4);
T=[q11+q22-q33-q44, 2*(q23-q14), 2*(q24+q13);
2*(q23+q14), q11-q22+q33-q44, 2*(q34-q12);
2*(q24-q13), 2*(q34+q12), q11-q22-q33+q44];

attC(:,k+1)=[asin(T(3,2));atan(-T(3,1)/T(3,3));atan(T(1,2)/T(2,2))];
%横滚角gamma修正
if T(3,3)<0
if attC(2,k+1)<0
attC(2,k+1)=attC(2,k+1)+pi;
else
attC(2,k+1)=attC(2,k+1)-pi;
end
end
%航向角psi修正
if T(2,2)<0
if T(1,2)>0
attC(3,k+1)=attC(3,k+1)+pi;
else
attC(3,k+1)=attC(3,k+1)-pi;
end
end
if abs(T(2,2))<1.0e-20
if T(1,2)>0
attC(3,k+1)=pi/2.0;
else
attC(3,k+1)=-pi/2.0;
end
end

%速度更新
vtC(:,k+1)=vtC(:,k)+ts*(fn(:,k)+gn-cross((2*wnie+wnen),vtC(:,k)));
%位置更新
posC(1,k+1)=posC(1,k)+ts*vtC(2,k)/(Rm+posC(3,k)); %纬度
posC(2,k+1)=posC(2,k)+ts*vtC(1,k)/((Rn+posC(3,k))*cos(posC(1,k)));%经度
posC(3,k+1)=posC(3,k)+ts*vtC(3,k); %高度
end
%%
attSta=attSta+attC;
vtSta=vtSta+vtC;
posSta=posSta+posC;
end
end
%对统计矩阵取平均
attC=1./StaNum*attSta;
posC=1./StaNum*posSta;
vtC=1./StaNum*vtSta;

%解算值与仿真值的误差 作图
%解算矩阵均为3x(N+1),需做处理
%N点数据,相邻两点采样间隔为0.1s,做作图横轴修正
for i=1:N
time(i)=i*ts;
Rm = Re*(1-2*f+3*f*(sin(attC(1,i)))^2);
Rn = Re*(1+f*(sin(attC(1,i)))^2);
Latitude_error(i)=(posC(1,i)-posS(1,i))*Rm;
Longitude_error(i)=(posC(2,i)-posS(2,i))*Rn*cos(attC(1,i));
end

posCp=posC(:,1:N);
figure;
subplot(131);plot(time,Latitude_error);title('纬度误差');xlabel('Time /s');ylabel('\it\deltaL /m');grid on;
subplot(132);plot(time,Longitude_error);title('经度误差');xlabel('Time /s');ylabel('\it\delta\phi /m');grid on;
subplot(133);plot(time,posCp(3,:)-posS(3,:));title('高度误差');xlabel('Time /s');ylabel('\it\deltah /m');grid on;

vtCp=vtC(:,1:N);
figure;
subplot(131);plot(time,vtCp(1,:)-vtetS(1,:));title('东速度误差');xlabel('Time /s');ylabel('\it\deltavelocity east /(m/s)');grid on;
subplot(132);plot(time,vtCp(2,:)-vtetS(2,:));title('北速度误差');xlabel('Time /s');ylabel('\it\deltavelocity north /(m/s)');grid on;
subplot(133);plot(time,vtCp(3,:)-vtetS(3,:));title('天速度误差');xlabel('Time /s');ylabel('\it\deltavelocity up /(m/s)');grid on;

%三维飞行轨迹图
figure;
plot3(posS(2,:)/pi*180,posS(1,:)/pi*180,posS(3,:),'k');
hold on;
plot3(posCp(2,:)/pi*180,posCp(1,:)/pi*180,posCp(3,:),'r');grid on;
ylabel('纬度L /arcdeg');xlabel('经度\phi /arcdeg');zlabel('高度h /m');title('黑线-仿真器飞行轨迹,红线-INS解算飞行轨迹');

2. 为什么通信系统仿真多用MATLAB,即matlab比其他仿真方式的优势

MATLAB其语法来较C/C++,JAVA更简单,更接近我们平常书源写的数学语言,因为它是脚本,无需申明变量,虽然执行效率低,但是易写。
而且MATLAB封装了通信及数字信号处理的许多函数,这些toolbox为系统仿真提供了很好的条件,其绘图功能非常强大,为数据分析、统计提供了极大的便利。