『壹』 大数据的特征是什么

1、容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

2、种类(Variety):数据类型的多样性;

3、速度(Velocity):指获得数据的速度;

4、可变性(Variability):妨碍了处理和有效地管理数据的过程。

5、真实性(Veracity):数据的质量。

6、复杂性(Complexity):数据量巨大,来源多渠道。

7、价值(value):合理运用大数据,以低成本创造高价值。

(1)大数据的三个特点扩展阅读:

大数据的精髓:

大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。

A、不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);

B、不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;

之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;

C、不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。

『贰』 大数据的基本特点有哪些

大数据的基本特点为:

1、容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。

2、种类(Variety):数据类型的多样性。

3、速度(Velocity):指获得数据的速度。

4、可变性(Variability):妨碍了处理和有效地管理数据的过程。

5、真实性(Veracity):数据的质量。

6、复杂性(Complexity):数据量巨大,来源多渠道。

7、价值(value):合理运用大数据,以低成本创造高价值。




(2)大数据的三个特点扩展阅读:

大数据分析的六个基本方面:

1、Analytic Visualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2、Data Mining Algorithms(数据挖掘算法)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

4、Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。

5、数据存储,数据仓库

数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。


参考资料来源:网络-大数据