⑴ 3大常用的数据分析工具是什么

1、Excel


在很多人眼里,Excel只是一个办公软件,但实际上,大部分人对Excel的认知还不到50%。Excel可以称得上是最全能的数据分析工具之一,包括表格制作、数据透视表、VBA等等功能,保证人们能够按照需求进行分析。


当然也有人认为自己非常精通计算机编程语言,不屑于使用Excel这种工具,因为Excel不能处理大数据。但换个思维想想,我们在日常中用到的数据是否超过了大数据这个极限呢?而且我们国家中小微型企业占了大部分,Excel足够处理绝大多数的数据分析需求。


2、Python


不可否认的是,python在数据分析领域,确实称得上是一个强大的语言工具。你可以随心所欲地写代码执行你想要的东西。尽管入门的学习难度要高于Excel和BI,但是作为数据科学家的必备工具,从职业高度上讲,它肯定是高于Excel、BI工具的。


尤其是在统计分析和预测分析等方面,Python等编程语言更有着其他工具无可比拟的优势。


新人在初入门时可以先不学Python,很多初级岗位甚至用不上Python,但如果想在这条路上长远发展,它一定是个逃不开的工具。


3、BI工具


BI也就是商业智能,这类工具就是为数据分析而生的。你会发现BI工具的产品设计,几乎是按照数据分析的流程来设计的。先是数据处理、整理清洗,再到数据建模,最后数据可视化,全程围绕数据指导运营决策的思想。由于功能聚焦,产品操作起来也非常简洁,依靠拖拉拽就能完成大部分的需求,没有编程基础的业务人员也能很快上手。


关于3大常用的数据分析工具是什么,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑵ HR需要掌握的数据分析工具有哪些

MATLAB、SPSS、Stata、SAS、EViews、Excel、Python、R这几款工具。
MATLAB
MATLAB是Matrix Laboratory(矩阵实验室)的缩写,是一款由美国The MathWorks公司出品的商业数学软件。MATLAB不仅仅是一款可以用来做统计分析的软件,它还可以高效地处理其他很多的数学问题。它常被用于各种数学建模和工程设计,相比于它强大的统计分析功能,这可说是大材小用。它具有丰富的库函数(工具箱);内嵌绘图功能,可实现数据的多维度展现;同时有良好的交互设计,活跃的社区以及丰富的文档……这些都使它具有极高的易用性,我们也可使用解释执行语言对其进行编程。
SPSS
SPSS是Statistical Proct and Service Solutions的缩写,是一款由IBM公司推出的用于分析运算、数据挖掘、预测分析和决策支持等一系列任务的软件产品及相关服务的总称[5]。SPSS可以用在经济分析、市场调研、自然科学等林林总总的领域。它最大的特点是“简单易用”。虽然它对前沿理论的支持不够全面,但是囊括了绝大部分常用的统计方法。简单的操作方式、友好的操作界面,再加上强大的功能,使其在国内统计分析工作领域吸引了大量用户。
Stata
Stata是Statacorp于1985年开发出来的统计程序[6]。和SPSS一样,它也支持常用分析方法,可用于多个领域,不过实践中在医学和生物学研究上的应用较多。Stata采用菜单和编程相结合的使用方式,其易用性虽不如SPSS,但在功能上略胜一筹。它在企业和学术机构的应用比较广泛。
SAS
SAS诞生于北卡罗莱纳州立大学,起初只是一个用于分析农业研究的项目。随着需求的增长,它的使用范围扩展至医药企业、银行业以及学术和政府机关。SAS系统提供的主要分析功能包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。SAS功能极其强大,算法包非常完善,但是它是纯编程界面,易用性低且入门困难,适合高级数据分析师或者专业人士使用。在统计分析领域,SAS一度是“统计分析系统”的缩写,被誉为国际上的标准软件和最具权威性的优秀统计软件包。
EViews
EViews是Econometrics Views的缩写,由Quantitative MicroSoftware(QMS)开发,是一款基于Windows设计的统计分析软件[8]。EViews可以用于常规的统计分析,但它在计量经济分析方面特别有效。它的易用性高,且相比于上述其他分析软件,入门级别低。针对计量经济学相关的分析,可以首先考虑该软件。
Excel
Excel是微软公司为Windows操作系统编写的一款电子表格系统,可以画各种图表、做方差分析、回归分析等基础分析。它的专业性虽然不高,但是完全可以胜任日常工作中简单的统计分析工作。同时,它极其方便的操作方式,以及Microsoft Office软件包成员之一的身份,使它成为最流行的个人计算机数据处理软件。
Python
Python是由荷兰人Guido van Rossum于1989年发明的一种面向对象的解释型编程语言,并于1991年公开发行第一个版本。Python是本书各种代码实现所使用的语言。之所以把Python语言列为数据分析的工具,是因为围绕它实现的各种数据分析与数据可视化的开源代码库被广泛应用。同时,Excel、SPSS等工具虽然具有可操作的界面,但并不能有效地结合Hadoop、Hive等组件有效地处理海量数据,而这些都是Python可以胜任的。
R
R是专用于统计分析以及可视化的语言,是AT&T研发S语言时的产物,可以认为是S语言的另一种实现方式。同Python一样,R也提供了极其丰富的库函数来做统计和展现。因为R太过强大且拥有大量的用户,为了能顺应用户的习惯,降低学习的成本,Python在数据处理上的很多库函数都是模仿R的实现,以保持与其基本一致的使用方式。

⑶ 国内有哪些比较好的数据挖掘工具呢

推荐几个吧,不是国内的,但表现力不错

1. Rapid Miner

它是Oracle高级分析数据库的代表。市场领先的公司用它最大限度地发掘数据的潜力,做出准确的预测。该系统配合强大的数据算法,锁定最佳客户。此外,它可识别异常情况和交叉销售机会,让用户能够根据需要运用不同的预测模型。此外,它以所需的方式定制客户画像。

⑷ 常用的数据挖掘工具有哪些

1、 Weka
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、 Rapid Miner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、 Orange
Orange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了 Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++ 和 Python开发,它的图形库是由跨平台的Qt框架开发。
4、 Knime
KNIME (Konstanz Information Miner) 是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、 jHepWork
jHepWork是一套功能完整的面向对象科学数据分析框架。 Jython宏是用来展示一维和二维直方图的数据。该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、 Apache Mahout
Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout 包含许多实现,包括集群、分类、CP 和进化程序。此外,通过使用 Apachehadoop库,Mahout 可以有效地扩展到云中。
7、 ELKI
ELKI(Environment for Developing KDD-Applications Supported by Index-Structures)主要用来聚类和找离群点。ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。可以用来寻找离群点。
8、 Rattle
Rattle(易于学习的 R 分析工具)提供数据的统计和可视化摘要,将数据转换成容易建模的形式,从数据中构建无监督和监督模型,以图形方式呈现模型的性能,并得出新的数据集。