大数据培训总结
① 大数据培训有没有什么学习心得谈谈
我最大的感受就是找个负责的老师,加上自己足够努力。可以到魔据,条件专不错,很注重基础教育,属真正做到为学生负责到底,其它的,说实在的真的不敢保证。刚开始有些枯燥,入门就好了,现在缺大数据人才,好好学会有前途。祝你好运。
② 大数据技术培训都学什么
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
大数据的5个“V”,或者说特点有五层面:
第一,数据体量巨大
从TB级别,跃升到PB级别。
第二,数据类型繁多
前文提到的网络日志、视频、图片、地理位置信息等等。
第三,价值密度低
以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快
1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
③ 大数据工程师需要掌握哪些技能
大数据技术体系庞大,包括的知识较多
1、学习大数据首先要学习Java基础
Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop
2、学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
3、学习大数据需要具备的能力
数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。
④ 大数据培训到底是培训什么
大数来据培训,目前主要有两种:
1、大源数据开发
数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;
2、数据分析与挖掘
一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。
大数据培训一般是指大数据开发培训。
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。