基带传输的特点
Ⅰ 基带的基带传输
在信道中直接传送基带信号时,称为基带传输。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备花费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
在有线信道中,直接用电传打字机进行通信时传输的信号就是基带信号。一个企业、工厂,就可以采用这种方式将大量终端连接到主计算机。基带数据传输速率为0~10 Mb/s,更典型的是1Mb/s~2.5Mb/s,通常用于传输数字信息。
频带传输:
在信道中直接传送频带信号时,称为频带传输。可以远距离传输.它的缺点是速率低,误码率高.
一般说的频带传输是数字基带信号经调制变换,成为能在公用电话线上传输的模拟信号,模拟信号经模拟传输媒体传送到接收端后,再还原成原来信号的传输。这种频带传输不仅克服了目前许多长途电话线路不能直接传输基带信号的缺点,而且能够实现多路复用,从而提高了通信线路的利用率。但是频带传输在发送端和接收端都要设置调制解调器,将基带信号变换为频带信号再传输。频带传输的优点是可以利于现有的大量模拟信道(如模拟电话交换网)通信.价格便宜,
容易实现.家庭用户拨号上网就属于这一类通信.
宽带传输Broadband
是相对一般说的频带传输而言的宽频带传输。宽带是指比音频带宽更宽的频带,它包括大部分电磁波频谱。使用这种宽频带传输的系统,称为宽带传输系统.其通过借助频带传输,可以将链路容量分解成两个或更多的信道,每个信道可以携带不同的信号,这就是宽带传输。宽带传输中的所有信道都可以同时发送信号。如CATV、ISDN等。传输的频带很宽在>=128kbps
宽带是传输模拟信号,数据传输速率范围为0~400Mb/s,而通常使用的传输速率是5Mb/s~10 Mb/s。它可以容纳全部广播,并可进行高速数据传输。宽带传输系统多是模拟信号传输系统。
一般说,宽带传输与基带传输相比有以下优点:
(1)能在一个信道中传输声音、图像和数据信息,使系统具有多种用途;
(2)一条宽带信道能划分为多条逻辑基带信道,实现多路复用,因此信道的容量大大增加;
(3)宽带传输的距离比基带远,因数字基带直接传送数字,传输的速率愈高,传输的距离愈短。
不要混淆基带,基带信号,基带传输这几个概念。
Ⅱ 数字基带传输系统中,传输码的结构应具备哪些基本特性
数字基带信号是代码的电波形,在实际基带传输系统中,并不是所有代码的电波形都能在信道中传输,对传输用的基带信号的主要要求有传输码型的选择和基带脉冲的选择。在选择传输码型时,一般应考虑以下原则:
(1)
不含直流成分,且低频分量应尽量少,
(2)
含有丰富的定时信息,以便从接收码流中提取定时信息,
(3)
功率谱主瓣宽度窄,以节省传输频带,
(4)
不受信源统计特性的影响,能适应信源的变化,
(5)
具有内在的检错能力,码型具有一定规律性,以便进行宏观监测,
(6)
编译码简单,以降低通信延时和成本。
Ⅲ 基带信号与宽带信号的传输各有什么特点
基带信号传输数据信号时,要传的数据仍用数字信号的形式传输。而用宽带信号传送数字信号时,要传的数据必须将其转换成模拟信号。在接收时,则要把收到的模拟信号转换成数字信号。
Ⅳ 基带传输和宽带传输的各有何特点
基带传输不需要调制,解调,设备花费少,传输距离一般不超过2公里。
宽带传输相比基带传输:能在一个信道中传输声音、图像和数据信息,使系统具有多种用途;信道的容量比基带大;传输的距离比基带远,不过需要调制解调,设备相对基带花费也高。
Ⅳ 基带传输的基本介绍
基带传输是一种不搬移基带信号频谱的传输方式。未对载波调制的待传信号称为基带信号,它所占的频带称为基带,基带的高限频率与低限频率之比通常远大于1。将基带信号的频谱搬移到较高的频带(用基带信号对载波进行调制)再传输,则称为通带传输。
选用基带传输或通带传输,与信道的适用频带有关。例如,计算机或脉码调制电话终端机输出的数字脉冲信号是基带信号,可以利用电缆作基带传输,不必对载波进行调制和解调。与通带传输相比,基带传输的优点是设备较简单;线路衰减小,有利于增加传输距离。对于不适合基带信号直接通过的信道(如无线信道),则可将脉冲信号经数字调制后再传输。
基带传输广泛用于音频电缆和同轴电缆等传送数字电话信号,同时,在数据传输方面的应用也日益扩大。通带传输系统中,调制前和调制后对基带信号处理仍须利用基带传输原理,采用线性调制的通带传输系统可以变换为等效基带传输来分析。
基带传输中的码型变换装置把来自信源的数码变换为适合于信道传输的码波形。常用的传输码波形有归零码、不归零码、传号差分码、双相码、交替传号反转码(AMI码)等。
归零码是用窄脉冲代表“1”码,没有脉冲代表“0”码。
不归零码是在一个码周期内维持一种电平,如高电平代表“1”,低电平代表“0”。传号差分码是用电平的变化来代表“1”(称“1”为传号),电平不变代表“0”。
差分码用于信号传输中高低电平会反转的场合。
双相码又称分相码或曼彻斯特码,用10组合代表“1”,01组合代表“0”。双相码的优点:没有直流分量,可用要求不高的交流耦合电路;01过渡频繁,有利于恢复定时信号等。缺点:传输码速加倍,所需频带加宽。
交替传号反转码是用窄的正脉冲或负脉冲代表“1”,无脉冲代表“0”,正、负脉冲交替出现。优点:没有直流分量,可利用正、负脉冲交替规律来监视误码;缺点:处于长“0”时,恢复定时信号困难。
此外,还有多种其他传输码型。例如,利于传输或节省频带的有部分响应编码、多电平码;利于定时信号恢复的有加扰二元码、高密度双极性码、编码传号反转码等。
基带传输发送滤波器用以限制信号频带,避免干扰其他系统,有时也可不用。传输信道可以是电缆。收信端滤波器用以滤除由信道带来的噪声和干扰。均衡器用以均衡信道畸变,以便减小码间干扰。滤波器和信道都对频带有限制,接收滤波器输出的波形会发生变化。采样判决电路每隔时间T对接收波形进行采样,得到样值脉冲。样值大于零判为“1”,小于零判为“0”。如果信道畸变和叠加噪声未使样值发生极性错误,就能无误地再生发信端信号。再经码型反变换(有时与判决结合起来实现),恢复的数码就送给信宿,如计算机或脉码调制电话终端机。
眼图用以直观判定码间干扰情况。对于没有均衡好的信道,相邻码间产生干扰,眼图的张开度缩小;相反,信道被均衡好后,眼图的张开度明显增大。因此,眼图可用来直接观察和判定均衡质量。对于没有均衡好的信道,相邻码间产生干扰,眼图的张开度缩小;相反,信道被均衡好后,眼图的张开度明显增大。因此,眼图可用来直接观察和判定均衡质量。
基带数字传输的重要指标是频带利用率η=Rb/B。式中Rb是每秒传输的二元码数,其单位为比特/秒(bit/s);B是传输所需频带。用二电平码传输时,η的理论最大值为2比特/(秒·赫)。要达到这一理论值,需要使用幅-频特性曲线陡峭的理想低通滤波器。在实用中,,α 为滚降系数,代表系统幅-频特性曲线的缓慢变化程度,0<α<1。若用M电平传输,η是二电平的log2M倍。基带数字传输的另一重要指标是误码率Pe。在实际测量中,Pe为误码数除以总码数。