数据挖掘视频
Ⅰ 你好,SPSS统计分析与数据挖掘 实例分析视频教程,能不能分享一下,原来的链接已经失效了。谢谢!
结合大来量的实例对spss各模块的自统计分析功能及图形功能等进行了详细讲解。每章均给出大量分析案例,具体内容为spss简介、spss数据挖掘系统介绍、spss数据文件管理、spss数据预处理、spss基本统计分析、多重反应分析、均值比较与检验、统计图制作、参数检验、回归分析、方差分析、相关分析、聚数分析、判别分析、因子分析、对应分析与结合分析、信度分析、生存分析、对数线性模型、时间序列分析、缺失值分析,以及spss在财务智能、数据预测、股市分析、社会经济分析、金融数据分析等方面的数据挖掘应用。
Ⅱ 数据挖掘的基本流程是什么
数据挖掘有很多不同的实施方法,如果只是把数据拉到Excel表格中计算一下,那只是数据分析,不是数据挖掘。本节主要讲解数据挖掘的基本规范流程。CRISP-DM和SEMMA是两种常用的数据挖掘流程。
从数据本身来考虑,数据挖掘通常需要有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示8个步骤。
步骤(1)信息收集:根据确定的数据分析对象,抽象出在数据分析中所需要的特征信息,然后选择合适的信息收集方法,将收集到的信息存入数据库。对于海量数据,选择一个合适的数据存储和管理的数据仓库是至关重要的。
步骤(2)数据集成:把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。
步骤(3)数据规约:如果执行多数的数据挖掘算法,即使是在少量数据上也需要很长的时间,而做商业运营数据挖掘时数据量往往非常大。数据规约技术可以用来得到数据集的规约表示,它小得多,但仍然接近于保持原数据的完整性,并且规约后执行数据挖掘结果与规约前执行结果相同或几乎相同。
步骤(4)数据清理:在数据库中的数据有一些是不完整的(有些感兴趣的属性缺少属性值)、含噪声的(包含错误的属性值),并且是不一致的(同样的信息不同的表示方式),因此需要进行数据清理,将完整、正确、一致的数据信息存入数据仓库中。不然,挖掘的结果会差强人意。
步骤(5)数据变换:通过平滑聚集、数据概化、规范化等方式将数据转换成适用于数据挖掘的形式。对于有些实数型数据,通过概念分层和数据的离散化来转换数据也是重要的一步。
步骤(6)数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。
步骤(7)模式评估:从商业角度,由行业专家来验证数据挖掘结果的正确性。
步骤(8)知识表示:将数据挖掘所得到的分析信息以可视化的方式呈现给用户,或作为新的知识存放在知识库中,供其他应用程序使用。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步,例如在某个工作中不存在多个数据源的时候,步骤(2)便可以省略。
步骤(3)数据规约、步骤(4)数据清理、步骤(5)数据变换又合称数据预处理。在数据挖掘中,至少60%的费用可能要花在步骤(1)信息收集阶段,而其中至少60%以上的精力和时间花在了数据预处理过程中。
Ⅲ 数据挖掘/大数据方向 以及视频处理方向 哪个就业更好
视频处理方向 就业更好
数据挖掘/大数据方向科研性较强,而且应用这方面知识的主要是大型电子商务公司,大型企业等,一般只有大型的企事业单位才有可能积累下海量数据,才会有数据挖掘的想法,因此应用范围窄一些
Ⅳ 如何自学数据分析
很多人都觉得,自己是文科类出身,或者对数理专业不熟悉,会很难上手数据分析。其实不是这样子的,学习数据分析,不同于程序员,它不会专门要求我们一定要掌握编程,只是理解熟悉就可以。个人的逻辑思维能力、个人兴趣所在,以及自身的决心毅力,这些才是构成一个人学成与否的关键和最重要因素。
小编觉得最重要的一点就是,我们得清楚企业对数据分析师的基础技能需求是什么。这样我们才能有的放矢。我大抵总结如下:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
之后,怎么安排自己的业余时间就看个人了。总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
Ⅳ 数据挖掘是什么
好比淘金者在河沙里淘沙获取金子一个道理,数据挖掘就是在大量已知的数据里找出来有用的数据!数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。