㈠ 大数据在电力行业的应用前景有哪些

作者:知乎用户
链接:https://www.hu.com/question/23241126/answer/24036849
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

作为曾经搞过几个电力相关项目的人,就自己粗浅的理解,很写实的回答一下吧,也希望专家指正:
1、国内电网行业相对封闭,很多国外的新技术和新思想并不适用于国内,根本没施展的基础和环境;
2、但国内电网行业技术上并不算落后,对国外相关技术的研究其实也都有及时跟踪和深入理解,只可惜,如1所述,确实没啥空间。
3、要玩大数据的前提是首先要有大数据,以前电网建设重点都集中在生产环节,配用电环节关注较少,而生产环节,起码目前,还谈不上大数据,相关的数据挖掘倒是一直都需要,也一直都在用。用电信息采集系统(用户能见到的就是智能电表)等的大面积推广,意味着与用户交互最多的配用电环节开始得到重视。
4、配用电环节要做到智能化,确实需要基于海量用户用电特征数据分析,进而实现台区的负荷预测、用电调度、有序用电等等。但遗憾的是,理念归理念、技术归技术、现实归现实,虽然智能配用电这一块理论上都设计的很好,但现实中还有很多问题。
5、以用电信息采集系统为例,其实是一个收集用户用电行为特征最好的前端设施,这里需要分钟级的数据采集频率,目前一般是15分钟。即一个小时采集4次。但由于用户住宅区的分布杂乱无章,要想采用重新布线的有线方式传输数据显然投资过大,PLC又慢又很不稳定。无线的话,GPRS目前使用较多,不过呢,大量用户数据都走GPRS,且不说费用,数据拥塞是避免不了的,受环境影响,干扰和屏蔽也较多。这样一来,后台收集数据经常会出现延迟和丢包情况,因此很多数据根本无法全部有效采集。也就不存在完整的海量数据一说,那么又到哪里去分析呢?
6、国内确实建设了一些完整的智能电网小区试点,用户家里也可以用智能插座,这种环境下用户数据可以得到有效收集,如果用户量较大,必然会产生大数据,相对也就需要大数据技术来处理和分析,从而进一步提高电网智能服务水平。但这种整体的改造要用到目前现有电力系统中,显然不现实,成本过高,电老大再有钱,也不可能去干这种事。
7、从电力的后台系统来说,涉及到了大量的各种业务系统,但这些系统多年的建设过程中因为缺乏顶层设计,所以大多自成体系,数据很难互通共享并提供上层应用服务,因此即便这些数据真的也是海量大数据,但要实现整体的分析挖掘,难度依然十分巨大。
8、风电、太阳能、包括微网的分布式能源接入,其实跟前端用户用电行为是密切相关的,由于目前还没有低成本高效率的储能系统,因此怎么分配这些能源,怎样与现有配电网很好的结合也会是十分麻烦的问题,要知道风电和太阳能等都是不确定性能源,对现网冲击还是很大的。这确实也需要数据分析技术的支持,譬如对风电准确的预测等。这些技术都很早就有人在研究,谈不上大数据。除非是大电网环境下,整体都构建成分布式能源,这时候可能才算得上是大数据吧。
8、总结一下,从未来看,智能电网的实现的确需要大数据做支撑,但在我国电网环境下,这将还是一个漫长的过程。当前说大数据,更多是噱头,吸引眼球和忽悠项目罢了。大部分省级公司的数据更多应该还是结构化运营数据,顶多T级了。

㈡ 数据仓库与数据库的主要区别有

首先我们来了解数据仓库和数据库分别是什么:
1、数据库:是一种逻辑概念,用来存放数据的仓库,通过数据库软件来实现。数据库由很多表组成,表是二维的,一张表里面有很多字段。字段一字排开,对数据就一行一行的写入表中。数据库的表,在于能够用二维表现多维的关系。如:oracle、DB2、MySQL、Sybase、MSSQL Server等。
2、数据仓库:是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大德多。数据仓库主要用于数据挖掘和数据分析,辅助领导做决策;
区别主要总结为以下几点:

1.数据库只存放在当前值,数据仓库存放历史值;
2.数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;
3.数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;
4.数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;
5.数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;
6.数据库在访问数据时要求响应速度快,其响应时间一般在几秒内,而数据仓库的响应时间则可长达数几小时