A. 光纤通信的主要优点是什么

光纤通信有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;版线径细、重量轻权,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。

光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.
随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。

B. 光传输的技术简介

同步光纤网(Synchronous Optical Network,SONET)和同步数字系列(Synchronous Digital Hierarchy,SDH):一种光纤传输体制(前者是美国标准,用于北美地区,后者是国际标准),它以同步传送模块(STM—1,155Mbps)为基本概念,其模块由信息净负荷、段开销、管理单元指针构成,其突出特点是利用虚容器方式兼容各种PDH体系。
准同步数字系列(Plesiochronous Digital Hierarchy ,PDH):SONET/SDH出现前的一种数字传输体制,非光纤传输主流设备。主要是为语音通信设计,没有世界性统一的标准数字信号速率和帧结构,国际互连互通困难。
波分复用技术(Wavelength Division Multiplex,WDM):本质上是在光纤上实行的频分复用(Frequency Division Multiplex ,FDM),即光域上的FDM技术。是提高光纤通信容量的有效方法。为了充分利用单模光纤低损耗区巨大的带宽资源,根据每一个信道光波频率(或波长)的不同而将光纤的低损耗窗口划分成若干个信道的技术。用不同的波长传送各自的信息,因此即使在同一根光纤上也不会相互干扰。 密集波分复用技术(Dense Wavelength Division Multiplex,DWDM):与传统WDM系统不同,DWDM系统的信道间隔更窄,更能充分利用带宽。
光分插复用(Optical Add/Drop Multiplex, OADM):是一种用滤光器或分用器从波分复用传输链路插入或分出光信号的设备。OADM在WDM系统中有选择地上/下所需速率、格式和协议类型的光波长信号。是在节点上只分接/插入所需的波长信号,其它波长信号则光学透明地通过这个节点。动态(灵活、可重构或可编程)的OADM是城域光网络得以实现的根本。局际光学环网使用动态的OADM,系统就可以在任何两个节点间提供全部波长信道的连接。
光交叉互连(OpticalCross-connect, OXC):用于光纤网络节点的设备,通过对光信号进行交叉连接,能够有效灵活地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。主要由WDM技术和光空分技术(光开关)综合而成。
全光网络(All Optical Network,AON):是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在的网络系统。也就是说,信息从源节点到目的节点的传输过程中始终在光域内,波长成为全光网络的最基本积木单元。由于全光网络中的信号传输全部在光域内进行,因此,全光网络具有对信号的透明性,它通过波长选择器件实现路由选择。全光网络以其良好的透明性、波长路由特性、兼容和可扩展性,成为下一代高速(超高速)宽带网络的首选。

C. 光缆传输的是电还是光

光传输传输的是光,是把电信号或者模拟信号通过光模块转换成光信号,在光纤中进行传输

D. 光通信的原理是什么

光通信的原理是光反射原理。现代的光纤通信就是运用光反射原理,把光的全反射限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递的。直到今天,信号灯、旗语、望远镜等目视光通信的手段仍在使用,但是这一切还是最原始的光通信,不能算作是真正的光通信。

(4)开放光传输扩展阅读:

我国十分重视光通信器件的研发,通过国家高新技术发展计划安排专题,组织技术攻关,跟踪国际先进技术等措施的实施,极大地推动了光通信器件的研究开发和产业化工作。随着光器件产业逐渐向中国转移,光通信行业基础设施建设进一步加快,中国已成为全球光电元器件的重要生产销售基地。

E. 光在光纤中的传输原理是什么

射线理论认为,光在光纤中传播主要是依据全反射原理。全反射原理:因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。

当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

按照几何光学全反射原理,射线在纤芯和包层的交界面产生全反射,并形成把光闭锁在光纤芯内部向前传播的必要条件,即使经过弯曲的路由光线也不射出光纤之外。

(5)开放光传输扩展阅读

光纤的分类:

①石英光纤:

石英光纤(Silica Fiber)是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,已广泛应用于有线电视和通信系统。

石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约1.4μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。

②掺氟光纤:

掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3μm波域的通信用光纤中,控制纤芯的掺杂物为二氧化锗(GeO2),包层是用SiO2作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。

由于瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。

石英光纤与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和图像传导等领域。

③红外光纤:

作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2μm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。红外光纤(Infrared Optical Fiber)主要用于光能传送。

例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。

④复合光纤:

复合光纤(Compound Fiber)是在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O3)、氧化钾(K2O)等氧化物制作成多组分玻璃光纤,特点是多组分玻璃比石英玻璃的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤内窥镜。

⑤氟氯化物光纤:

氟化物光纤氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。这种光纤原料又简称 ZBLAN(即将氟化锆(ZrF2)、氟化钡(BaF2)、氟化镧(LaF3)、氟化铝(AlF3)、氟化钠(NaF)等氯化物玻璃原料简化成的缩语。

主要工作在2~10μm波长的光传输业务。由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可行性开发,例如:其理论上的最低损耗,在3μm波长时可达10-2~10-3dB/km,而石英光纤在1.55μm时却在0.15-0.16dB/Km之间。

ZBLAN光纤由于难于降低散射损耗,只能用在2.4~2.7μm的温敏器和热图像传输,尚未广泛实用。最近,为了利用ZBLAN进行长距离传输,正在研制1.3μm的掺镨光纤放大器(PDFA)。

⑥塑包光纤:

塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。它与石英光纤相比较,具有纤芯粗、数值孔径(NA)高的特点。因此,易与发光二极管LED光源结合,损耗也较小。所以,非常适用于局域网(LAN)和近距离通信。

F. DWDM与OTN的区别

DWDM与OTN的区别有:

1、原理不同:DWDM技术是利用单模光纤的带宽以及低损耗的特性,采用多个波长作为载波,允许各载波信道在光纤内同时传输。

而OTN光传送网技术是电网络与全光网折衷的产物,将SDH强大完善的OAM&P 理念和功能移植到了WDM 光网络中。

2、功能不同:DWDM能够在同一根光纤中,把不同的波长同时进行组合和传输,而OTN是在光域内实现业务信号的传送、复用、路由选择、监控。

3、结构不同:DWDM从结构上分,目前有集成系统和开放系统。集成式系统,要求接入的单光传输设备终端的光信号是满足G.692标准的光源。

而OTN的结构是电路层网络、光通道层网络、光复用段层网络、光传输段层网络和物理媒质层网络。

(6)开放光传输扩展阅读:

DWDM与通用的单信道系统相比,密集 WDM不仅极大地提高了网络系统的通信容量,充分利用了光纤的带宽,而且它具有扩容简单和性能可靠等诸多优点。

特别是它可以直接接入多种业务更使得它的应用前景十分光明。在模拟载波通信系统中,为了充分利用电缆的带宽资源,提高系统的传输容量,通常利用频分复用的方法。

即在同一根电缆中同时传输若干个信道的信号,接收端根据各载波频率的不同利用带通滤波器滤出每一个信道的信号。

G. 光纤传输原理

光纤传输的原理
光纤传输是利用光的全反射原理,射线在纤芯和包层的交界面会产生全反射,并形成把光闭锁在光纤芯内部向前传播,即使经过弯曲的路光线也不会射出光纤之外。只是在均匀透明的玻璃纤芯上不断的进行反射,从一端传导至另一端。由于纤芯直径很小,光沿着玻璃纤芯传输,光信号的损耗会比在网线中电信号传输损耗低很多。

光纤是一种由玻璃或塑料制成的纤维,可作为光传导工具,按传输模式可分为:单模光纤和多模光纤。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光,其模间色散很小,适合远距离的光纤传输。

多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光,其模间色散较大,多模光纤传输的距离就比较近,一般只有几公里。
光纤为什么要进行熔接
要保证光纤光信号的长距离传输,进行熔接就非常重要了。将断开的两条光纤通过熔接的方法连接起来,可以有效的降低每个节点的损耗,确保高反射率及传输的稳定。需要用到的设备熔接机、切割刀、测试仪、红光笔等工具,包含了光纤切割、清洁、熔接、监测、盘纤等步骤,对操作者的技术水平要求较高,也是一项细致活。
在光纤连接时,很多考虑到安装的方便、快捷,会采用冷接的技术,冷接不需要太多的设备,光纤切刀即可,但每个接点需要一个快速连接器,也叫冷接子。冷接的缺点是损失偏大,约0.1至0.2dB每个点,只适合野外临时使用。考虑光纤使用的长久性,热熔是最好的方式,但成本较高,技术要求也高。

H. 光通讯的原理与应用

【光通信原理】光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
光通信正是利用了全反射原理,当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线,子午光线是位于子午面上的光光线,而斜射光线是不经过光纤轴线传输的光线。
【全光网络】未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。
骨干网是对速度、距离和容量要求最高的一部分网络,将ASON技术应用于骨干网,是实现光网络智能化的重要一步,其基本思想是在过去的光传输网络上引入智能控制平面,从而实现对资源的按需分配。DWDM也将在骨干网中一显身手,未来有可能完全取代SDH,从而实现IPOVERDWDM。
城域网将会成为运营商提供带宽和业务的瓶颈,同时,城域网也将成为最大的市场机遇。目前基于SDH的MSTP技术成熟、兼容性好,特别是采用了RPR、GFP、LCAS和MPLS等新标准之后,已经可以灵活有效地支持各种数据业务。
对接入网来说,FTTH(光纤到户)是一个长远的理想解决方案。FTTx的演进路线将是逐渐将光纤向用户推近的过程,即从FTTN(光纤到小区)到FTTC(光纤到路边)和FTTB(光纤到公寓小楼)乃至最后到FTTP(光纤到驻地)。当然这将是一个很长的过渡时期,在这个过程中,光纤接入方式还将与ADSL/ADSL2+并存。
基于上述全光网络构架有很多核心技术,它们将引领光通信的未来发展。ASON、FTTH、DWM、RPR这四项目前是光通信行业最重要的技术。
【光通信技术】
1、ASON
无论从国内研发进展、试商用情况,还是从国外的发展经验来看,国内运营商在传送网中大规模引入ASON技术将是必然的趋势。ASON(,智能光网络)是一种光传送网技术。目前的产品和市场状况表明,ASON技术已经达到可商用的成熟程度,随着3G、NGN的大规模部署,业务需求将进一步带动传送网技术的发展,预计2007年ASON将得到更加广泛的商用。
2006年各大主要设备提供商华为、中兴、烽火、Lucent等已经推出了其可商用的ASON产品。中国电信、中国网通、中国移动、中国联通和中国铁通陆续开展了ASON的应用测试和小规模商用。
ASON在国外成功商用的经验表明,ASON将在骨干传送网发挥不可替代的作用。例如,AT&T的140个节点覆盖美国的骨干传送网;BT组建21CN网,目前已建40个ASON节点;Vodafone的131个节点覆盖英国的ASON骨干传送网,等等。
然而,目前ASON在路由、自动发现、ENNI接口等几方面的标准化工作还不完善,这成为制约ASON技术发展和商用的重要因素。未来我国将参与更多的ASON标准化工作,同时,ASON的标准化,尤其是其中ENNI的标准化,将在近年内取得突破性进展。
2、FTTH
FTTH(FiberToTheHome,光纤到户)是下一代宽带接入的最终目标。目前,实现FTTH的技术中,EPON将成为未来我国的主流技术,而GPON最具发展潜力。
EPON采用Ethernet封装方式,所以非常适于承载IP业务,符合IP网络迅猛发展的趋势。目前,国家已经将EPON作为“863”计划重大项目,并在商业化运作中取得了主动权。
GPON比EPON更注重对多业务的支持能力,因此更适合未来融合网络和融合业务的发展。但是它目前还不够成熟并且价格偏高,还无法在我国大规模推广。
我国的FTTH还处于市场启动阶段,离大规模的商业部署还有一段距离。在未来的产业化发展中,运营商对本地网“最后一公里”的垄断是制约FTTH发展的重要因素,采取“用户驻地网运营商与房地产开发商合作实施”的形式,更有利于FTTH产业的健康发展。从日本、美国、欧洲和韩国等国家的FTTH发展经验来看,FTTH的核心推动力在于网络所提供的丰富内容,而政府对应用和内容的监控和管理政策也会制约FTTH的发展。
3、WDM
WDM突破了传统SDH网络容量的极限,将成为未来光网络的核心传输技术。 按照通道间隔的不同,WDM(,波分复用)可以分为DWDM(密集波分复用)和CWDM(稀疏波分复用)这两种技术。DWDM是当今光纤传输领域的首选技术,但CWDM也有其用武之地。
2006年,烽火、华为等设备厂商都推出了自己的DWDM系统,国内运营商也开展了相关的测试和小规模商用。未来DWDM将在对传输速率要求苛刻的网络中发挥不可替代的作用,如利用DWDM来建设骨干网等。
相对于DWDM,CWDM具有成本低、功耗低、尺寸小、对光纤要求低等优点。未来几年,电信运营商将会严格控制网络建设成本,这时CWDM技术就有了自己的生存空间,它适合快速、低成本多业务网络建设,如应用于城域和本地接入网、中小城市的城域核心网等。
4、RPR
弹性分组环(ResilientPacketRing,RPR)将成为未来重要的光城域网技术。近年来许多国内外传输设备厂商都开发了内嵌RPR功能的MSTP设备,RPR技术得到了大量芯片制造商、设备制造商和运营商的支持和参与。
在标准化方面,IEEE802.17的RPR标准已经被整个业界认可,而国内的相关标准化工作还在进行中。未来RPR将主要应用于城域网骨干和接入方面,同时也可以在分散的政务网、企业网和校园网中应用,还可应用于IDC和ISP之中。