光传输介绍
① 什么事光传输
光传输
一种光纤传输体制(前者是美国标准,用于北美地区,后者是国际标准),它以同步传送模块(STM—1,155Mbps)为基本概念,其模块由信息净负荷、段开销、管理单元指针构成,其突出特点是利用虚容器方式兼容各种PDH体系。
准同步数字系列(Plesiochronous Digital Hierarchy ,PDH):SONET/SDH出现前的一种数字传输体制,非光纤传输主流设备。主要是为语音通信设计,没有世界性统一的标准数字信号速率和帧结构,国际互连互通困难。
波分复用技术(Wavelength Division Multiplex,WDM):本质上是在光纤上实行的频分复用(Frequency Division Multiplex ,FDM),即光域上的FDM技术。是提高光纤通信容量的有效方法。为了充分利用单模光纤低损耗区巨大的带宽资源,根据每一个信道光波频率(或波长)的不同而将光纤的低损耗窗口划分成若干个信道的技术。用不同的波长传送各自的信息,因此即使在同一根光纤上也不会相互干扰。 p 密集波分复用技术(Dense Wavelength Division Multiplex,DWDM):与传统WDM系统不同,DWDM系统的信道间隔更窄,更能充分利用带宽。
光分插复用(Optical Add/Drop Multiplex, OADM):是一种用滤光器或分用器从波分复用传输链路插入或分出光信号的设备。OADM在WDM系统中有选择地上/下所需速率、格式和协议类型的光波长信号。是在节点上只分接/插入所需的波长信号,其它波长信号则光学透明地通过这个节点。动态(灵活、可重构或可编程)的OADM是城域光网络得以实现的根本。局际光学环网使用动态的OADM,系统就可以在任何两个节点间提供全部波长信道的连接。
光交叉互连(OpticalCross-connect, OXC):用于光纤网络节点的设备,通过对光信号进行交叉连接,能够有效灵活地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。主要由WDM技术和光空分技术(光开关)综合而成。
全光网络(All Optical Network,AON):是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在的网络系统。也就是说,信息从源节点到目的节点的传输过程中始终在光域内,波长成为全光网络的最基本积木单元。由于全光网络中的信号传输全部在光域内进行,因此,全光网络具有对信号的透明性,它通过波长选择器件实现路由选择。全光网络以其良好的透明性、波长路由特性、兼容和可扩展性,成为下一代高速(超高速)宽带网络的首选。
② 光通讯的原理与应用
【光通信原理】光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
光通信正是利用了全反射原理,当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线,子午光线是位于子午面上的光光线,而斜射光线是不经过光纤轴线传输的光线。
【全光网络】未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。
骨干网是对速度、距离和容量要求最高的一部分网络,将ASON技术应用于骨干网,是实现光网络智能化的重要一步,其基本思想是在过去的光传输网络上引入智能控制平面,从而实现对资源的按需分配。DWDM也将在骨干网中一显身手,未来有可能完全取代SDH,从而实现IPOVERDWDM。
城域网将会成为运营商提供带宽和业务的瓶颈,同时,城域网也将成为最大的市场机遇。目前基于SDH的MSTP技术成熟、兼容性好,特别是采用了RPR、GFP、LCAS和MPLS等新标准之后,已经可以灵活有效地支持各种数据业务。
对接入网来说,FTTH(光纤到户)是一个长远的理想解决方案。FTTx的演进路线将是逐渐将光纤向用户推近的过程,即从FTTN(光纤到小区)到FTTC(光纤到路边)和FTTB(光纤到公寓小楼)乃至最后到FTTP(光纤到驻地)。当然这将是一个很长的过渡时期,在这个过程中,光纤接入方式还将与ADSL/ADSL2+并存。
基于上述全光网络构架有很多核心技术,它们将引领光通信的未来发展。ASON、FTTH、DWM、RPR这四项目前是光通信行业最重要的技术。
【光通信技术】
1、ASON
无论从国内研发进展、试商用情况,还是从国外的发展经验来看,国内运营商在传送网中大规模引入ASON技术将是必然的趋势。ASON(,智能光网络)是一种光传送网技术。目前的产品和市场状况表明,ASON技术已经达到可商用的成熟程度,随着3G、NGN的大规模部署,业务需求将进一步带动传送网技术的发展,预计2007年ASON将得到更加广泛的商用。
2006年各大主要设备提供商华为、中兴、烽火、Lucent等已经推出了其可商用的ASON产品。中国电信、中国网通、中国移动、中国联通和中国铁通陆续开展了ASON的应用测试和小规模商用。
ASON在国外成功商用的经验表明,ASON将在骨干传送网发挥不可替代的作用。例如,AT&T的140个节点覆盖美国的骨干传送网;BT组建21CN网,目前已建40个ASON节点;Vodafone的131个节点覆盖英国的ASON骨干传送网,等等。
然而,目前ASON在路由、自动发现、ENNI接口等几方面的标准化工作还不完善,这成为制约ASON技术发展和商用的重要因素。未来我国将参与更多的ASON标准化工作,同时,ASON的标准化,尤其是其中ENNI的标准化,将在近年内取得突破性进展。
2、FTTH
FTTH(FiberToTheHome,光纤到户)是下一代宽带接入的最终目标。目前,实现FTTH的技术中,EPON将成为未来我国的主流技术,而GPON最具发展潜力。
EPON采用Ethernet封装方式,所以非常适于承载IP业务,符合IP网络迅猛发展的趋势。目前,国家已经将EPON作为“863”计划重大项目,并在商业化运作中取得了主动权。
GPON比EPON更注重对多业务的支持能力,因此更适合未来融合网络和融合业务的发展。但是它目前还不够成熟并且价格偏高,还无法在我国大规模推广。
我国的FTTH还处于市场启动阶段,离大规模的商业部署还有一段距离。在未来的产业化发展中,运营商对本地网“最后一公里”的垄断是制约FTTH发展的重要因素,采取“用户驻地网运营商与房地产开发商合作实施”的形式,更有利于FTTH产业的健康发展。从日本、美国、欧洲和韩国等国家的FTTH发展经验来看,FTTH的核心推动力在于网络所提供的丰富内容,而政府对应用和内容的监控和管理政策也会制约FTTH的发展。
3、WDM
WDM突破了传统SDH网络容量的极限,将成为未来光网络的核心传输技术。 按照通道间隔的不同,WDM(,波分复用)可以分为DWDM(密集波分复用)和CWDM(稀疏波分复用)这两种技术。DWDM是当今光纤传输领域的首选技术,但CWDM也有其用武之地。
2006年,烽火、华为等设备厂商都推出了自己的DWDM系统,国内运营商也开展了相关的测试和小规模商用。未来DWDM将在对传输速率要求苛刻的网络中发挥不可替代的作用,如利用DWDM来建设骨干网等。
相对于DWDM,CWDM具有成本低、功耗低、尺寸小、对光纤要求低等优点。未来几年,电信运营商将会严格控制网络建设成本,这时CWDM技术就有了自己的生存空间,它适合快速、低成本多业务网络建设,如应用于城域和本地接入网、中小城市的城域核心网等。
4、RPR
弹性分组环(ResilientPacketRing,RPR)将成为未来重要的光城域网技术。近年来许多国内外传输设备厂商都开发了内嵌RPR功能的MSTP设备,RPR技术得到了大量芯片制造商、设备制造商和运营商的支持和参与。
在标准化方面,IEEE802.17的RPR标准已经被整个业界认可,而国内的相关标准化工作还在进行中。未来RPR将主要应用于城域网骨干和接入方面,同时也可以在分散的政务网、企业网和校园网中应用,还可应用于IDC和ISP之中。
③ 什么是光传输
光传输是在发送方和接收方之间以光信号形态进行传输的技术。光传输电视信号的工作过程是在光发射机、光纤和光接收机三者之间进行的; 在中心机房的光发射机把输入的RF电视信号变换成光信号,它由电/光变换器(Electric-Optical Transcer,E/O)完成,变换成的光信号由光纤传输导向接收设备(光接收机)接收,光接收机把从光纤中获取的光信号变换还原成电信号。因此光传输信号的基理就是电/光和光/电变换的全过程,也称为光链路。
④ 光纤传输有哪些特点 光纤传输的原理
传输的具体性能
光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。
光纤传输的特点
光纤传输系统主要由三部分组成:光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准。
由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分: 光线只沿光纤的内芯进行传输, 只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。
按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index fiber),简称GIF;环形光纤(river fiber);W 型光纤
⑤ 光传输的作用是什么光传输由哪些设备组成
光传输抄设备就是把各种各样的信号转换成光信号在光纤上传输的设备,因此现代光传输设备都要用到光纤。常用的光传输设备有:光端机,光MODEM,光纤收发器,光交换机,PDH,SDH、PTN等类型的设备。
一般而言,光传输设备都有传输距离较远,信号不容易丢失,波形不容易失真等特点,可用于各种场所。所以越来越多场所都使用光传输设备代替传统设备。
对于光传输由那些设备组成这个问题你可以搜索深圳立通,那里有详细的介绍。
⑥ 光通信的原理是什么
光通信的原理是光反射原理。现代的光纤通信就是运用光反射原理,把光的全反射限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递的。直到今天,信号灯、旗语、望远镜等目视光通信的手段仍在使用,但是这一切还是最原始的光通信,不能算作是真正的光通信。
(6)光传输介绍扩展阅读:
我国十分重视光通信器件的研发,通过国家高新技术发展计划安排专题,组织技术攻关,跟踪国际先进技术等措施的实施,极大地推动了光通信器件的研究开发和产业化工作。随着光器件产业逐渐向中国转移,光通信行业基础设施建设进一步加快,中国已成为全球光电元器件的重要生产销售基地。
⑦ 光纤传输原理
光纤传输的原理
光纤传输是利用光的全反射原理,射线在纤芯和包层的交界面会产生全反射,并形成把光闭锁在光纤芯内部向前传播,即使经过弯曲的路光线也不会射出光纤之外。只是在均匀透明的玻璃纤芯上不断的进行反射,从一端传导至另一端。由于纤芯直径很小,光沿着玻璃纤芯传输,光信号的损耗会比在网线中电信号传输损耗低很多。
光纤是一种由玻璃或塑料制成的纤维,可作为光传导工具,按传输模式可分为:单模光纤和多模光纤。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光,其模间色散很小,适合远距离的光纤传输。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光,其模间色散较大,多模光纤传输的距离就比较近,一般只有几公里。
光纤为什么要进行熔接
要保证光纤光信号的长距离传输,进行熔接就非常重要了。将断开的两条光纤通过熔接的方法连接起来,可以有效的降低每个节点的损耗,确保高反射率及传输的稳定。需要用到的设备熔接机、切割刀、测试仪、红光笔等工具,包含了光纤切割、清洁、熔接、监测、盘纤等步骤,对操作者的技术水平要求较高,也是一项细致活。
在光纤连接时,很多考虑到安装的方便、快捷,会采用冷接的技术,冷接不需要太多的设备,光纤切刀即可,但每个接点需要一个快速连接器,也叫冷接子。冷接的缺点是损失偏大,约0.1至0.2dB每个点,只适合野外临时使用。考虑光纤使用的长久性,热熔是最好的方式,但成本较高,技术要求也高。
⑧ 光缆的传输原理是什么
光纤是圆柱形的介质波导,应用全反射原理来传导光线。
光纤的结回构大致分为里面的核答心部分与外面的包覆部各种各样的光纤分。为了要局限光信号于核心,包覆的折射率必须小于核心的折射率。渐变光纤的折射率是缓慢改变的,从轴心到包覆,逐渐地减小;而突变光纤在核心-包覆边界区域的折射率是急剧改变的。