1. 数据分析师,数据挖掘师,大数据工程师,三者的工作有何区别

1、“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识版规则”KDD(Knowledge Discover in Database);权
2、“数据分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则;
3、“数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。
4、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。如传统的控制论建模的本质就是描述输入变量与输出变量之间的函数关系,“数据挖掘”可以通过机器学习自动建立输入与输出的函数关系,根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。

2. 如何有效地进行数据挖掘和分析

经常听人提到数据分析,那么数据怎么去分析?简单来说,可能就是做一些数据做统计、可视化、文字结论等。但是相比来说,数据挖掘就相对来说比较低调一些,这是这种低调,反而意味着数据挖掘对研究人员的要求要更高一些。
数据分析人员需要理解业务的核心指标,通过数据分析工具(比如R/SAS/SQL,或者内部的数据平台)对业务数据进行建模和分析,为相关的业务指标提供基于数据的解决方案。所以,数据分析岗位要求具备扎实的统计学功底和对数据的敏感。数据挖掘人员需要研究数据,试验和选择合适的机器学习相关的算法模型对数据进行建模和分析,最后自己在实际系统中将算法模型进行高性能的工程实现。所以,数据挖掘岗位要求同时具备深厚的机器学习功底和扎实的编程能力。
数据分析与数据挖掘不是相互独立的。数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。但很多情况下,这种分析往往不解渴。如果要分析这些已有信息背后隐藏的信息呢,而这些信息通过观察往往是看不到的,这时数据挖掘就冲在了数据分析的前面,作为分析之前要走的一个门槛。
除此之外,因为数据挖掘的输出往往含有的信息价值比较高,因此这些输出不仅仅应用在分析上,更多的是用在其他应用上,如网站后台、APP应用上,实实在在提供一些决策来丰富应用的功能。
数据挖掘不是简单的人为推测就可以的,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。但是前提是,必须针对某些具体的业务来。没有落实真正的场景和需求,没有落实需要的输入和输出,空谈数据挖掘,就是纯粹的耍流氓。举个简单的例子,房价预测,这里给出了一系列的点,我们要预测未来的一点。如果不知道业务,也就是相当我们不知道这些点的由来,那么完全可以理解为这些点可能是地球轨迹中的一部分,或者其他,这样的话,会做出不一样的结论。
其实在数据分析上,往往也需要研究人员了解业务。在数据分析与数据挖掘领域,要想做好,那就先去获取数据、学好业务,再说其他吧。

3. 数据分析和数据挖掘两者有区别吗

数据分析与数据挖掘是有很大有区别的。

  • 数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。

  • 数据分析与数据挖掘的思考方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。

    我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的假设。

    分析框架(假设)+客观问题(数据分析)=结论(主观判断)

    而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确

  • 数据分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高需要比较强的编程能力,数学能力和机器学习的能力。如果从结果上来看,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。数据分析是将数据转化为信息的工具,而数据挖掘是将信息转化为认知的工具。

  • 其实不论数据分析还是数据挖掘,能抓住老鼠的就是好猫,真的没必要纠结他们之前的区别,难道你给领导汇报时,第一部分是数据分析得出,第二部分是数据挖掘得出?他们只关注你分析的逻辑、呈现的方式。

4. 大数据和数据挖掘什么区别

传统的数据挖掘就是在数据中寻找有价值的规律,这和现在热炒的大数据在方向上是一致的。
只不过大数据具有“高维、海量、实时”的特点,就是说数据量大,数据源和数据的维度高,并且更新迅速的特点,传统的数据挖掘技术可能很难解决,需要从算法的改进(提升算法对大数据的处理能力)和方案的框架(分解任务,把大数据分析拆解成若干小单元加以解决,或者通过规律的提取,把重复出现的数据加以整合等等)等多方面去提升处理能力。
所以,可以理解成大数据是场景是问题,而数据挖掘是手段。

5. 数据分析和数据挖掘的区别是什么

就目前而言,大数据、数据分析、物联网、人工智能的不断发展使得各行各业积累了很多的原始数据,尤其是在这个互联网时代中,数据不断的扩大。对于数据的正误以及是够有价值都是比较重要的,于是就有了数据分析这个行业,但是数据行业的新人对于数据分析和数据挖掘不是很清楚多了,那么现在就给大家讲讲数据分析和数据挖掘的区别是什么。
从广义来讲,数据分析就是数据分析和数据挖掘,但是从狭义来讲,数据分析和数据挖掘不是种事物。现在我们就具体的讲讲数据分析和数据挖掘。专业的说法,数据分析是指依据分析目的,用恰当的统计分析办法及东西,对收集来的数据进行处理与分析,获取有价值的信息,发挥数据的效果。那么什么是数据的分析效果呢?数据分析效果首先实现三大效果:现状分析、因素分析、猜测分析、定量。数据分析的方针清晰,先做假定,然后经过数据分析来验证假定是不是准确,然后得到相应的定论。
现在就讲讲数据挖掘。简单来说数据挖掘是指从很多的数据中,经过统计学、人工智能、机器学习等办法,发掘出不明且有价值的信息和常识的进程。挖掘效果就是数据发掘首要偏重处理四类疑问,这四类疑问就是分类、聚类、相关和猜测,数据发掘的重点在寻找不知道的形式与规律。试想一下,数据挖掘工作如果做的不好,挖掘的数据都不是很好的数据,那么分析出的结果也并不是准确的,这不但浪费了时间,而且后续的工作完全没了意义。数据挖掘就是挖出好的数据从而为数据分析做好一个铺垫。使得数据分析工作做得更好。
总的来说,数据分析与数据发掘的本质都是相同的,都是从数据里面发现关于事务的常识有价值的信息,然后协助事务运营、改善商品以及协助企业做非常好的决策。由此可见,数据分析工作的好坏取决于数据挖掘工作的好坏,大家在进行数据分析工作之前一定要好好的注意好数据挖掘工作,只有注意到了数据挖掘工作,才能够得出一些不错的数据,从而为数据分析工作做好铺垫,最后分析出一个准确的数据。

6. 数据挖掘与数据分析的区别是什么

  • 数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。

  • 数据分析与数据挖掘的思考方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。

    我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的假设。

    分析框架(假设)+客观问题(数据分析)=结论(主观判断)

    而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确

  • 数据分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高需要比较强的编程能力,数学能力和机器学习的能力。如果从结果上来看,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。数据分析是将数据转化为信息的工具,而数据挖掘是将信息转化为认知的工具。


其实不论数据分析还是数据挖掘,能抓住老鼠的就是好猫,真的没必要纠结他们之前的区别,难道你给领导汇报时,第一部分是数据分析得出,第二部分是数据挖掘得出?他们只关注你分析的逻辑、呈现的方式。