A. 初中数学数据的的描述的定义

条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图.条形统计图是用条形的长短来代表数量的大小,便于比较.
条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。
频数:一般我们称落在不同小组中的数据个数为该组的频数(frequency)]
频率:频数与数据总数的比为频率。频率*100%就是百分比。
条形图主要用于表示离散型数据资料,即计数数据。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
⒈当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。
⒉频率不等同于概率.由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A).
英文释义: frequency
随机事件在n次试验中发生m次的相对频次m/n。一般物理科学中频率指每秒中的振动次数,可以是随机的,也可以是确定性的。
在一定条件下,对所研究的对象进行观察或测验,每实现一次条件组,称为一次试验。其结果称为事件。在一次试验中,可能发生也可能不发生的事件称为随机事件。
随机事件 A发生的概率p(A)是该事件出现的可能性大小的度量。其数值在0与1之间。在一定条件下进行试验,如果事件A不可能发生,则p(A)=0;如果事件A必然发生,则p(A)=1。随着试验次数n的增大,频率接近于概率的可能性也越大,即:
式中δ是任意小数值。
水文现象是复杂的自然现象,其出现的概率无法确知,只能通过统计实测水文资料中出现的频率作出推断。由于受到所依据资料的限制,总会带有一定的误差。
描述水文随机现象的随机变量X , 一般属于连续型。因此,X等于任意数x的概率是p{X=x}。水文计算中以累积频率曲线FX(x)~x来描述水文变量的统计特性。如求长江宜昌站年洪峰流量大于或等于 80000m3/s的概率p{X≥80000}=FX(80000)。
在水文计算中,一般根据实测资料通过统计分析推估水文变量的频率密度函数fX(x),再对fX(x)积分(见图),可求得水文变量累积频率函数FX(x):
水文计算中,习惯上把累积频率曲线FX(x)简称为频率曲线,fX(x)~x曲线则称为频率密度分布曲线。
频率=频数/总数*100%扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数。通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
作用:能清楚地反映出各部分数同总数之间的关系与比例.
扇形面积与其对应的圆心角的关系是:
扇形面积越大,圆心角的度数越大。
扇形面积越小,圆心角的度数越小。
扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比*360度
扇形统计图还可以画成圆柱形的。
以上是扇形的公式
制作:
1 以知单位一,求出各面积占单位一的百分率(分率).
2 如单位一未知,应先求出单位一.
3 用360(圆的度数)乘求出的百分比(百分数),求应画角的度数.
4 画一个平面圆形
5 用量角器量出角度画半径.
ps:单位一未知用除法,找出实数再找它的对应分率
通过扇形的大小来反映各个部分占总体的百分之几。
如果要更清楚的了解个部分数量同总数之间的关系,可以用扇形统计图。
扇形统计图可以让一些杂乱无章的数据变得清晰透彻,使人看上去一目了然,便于观察,利于计算各种数据,变得更加方便,快捷!