❶ 为什么要做数据分析师:职业规划很重要

“数据分析”作为近几年最火热的词汇,越来越受到大家的关注。但和一些应届生或者数据分析师沟通时,发现很多人都对数据分析的职业规划很迷茫。今天我们主要从业务方向的数据分析入手,聊聊数据分析的入门条件及职业规划。


“0基础入行数据分析要掌握哪些技能?”

“怎么能最快找到数据分析工作?”

“数据分析师未来的发展方向是什么?”

数据分析是什么?

数据分析是有关“数据”类岗位的总称。从事这些工作的人,通过分析数据发现业务问题,洞察商业机会点,为运营活动、业务增长及企业发展提供合理建议及参考依据。

数据分析主要是与数据打交道,但数据分析≠分析大数据,所以大家不要对这个职位产生恐惧感,零基础转行数据分析是可行的。要入门的话,3个月的时间也是足够的。


需要注意的是:

1.如果本身对数据不敏感,或者看到复杂的数据就眼晕头疼,那说明你可能不太适合这个岗位。

2.目前数据分析已不再是专职技能,而是职场人必备的通用技能,建议每个职场人都可以学一下,会让你在职场竞争中更有优势。至于是否从事数据分析工作,还是看你对数据的敏感程度以及你对这个岗位的热爱程度。


数据分析岗位方向及工作内容


数据分析可以简单分为业务和技术2大方向:

业务方向——数据运营、数据分析师、商业分析、用户研究、增长黑客、数据产品经理等

技术方向——数据开发工程师、数据挖掘工程师、数据仓库工程师等

业务类岗位的数据分析师大多在业务部门,主要工作是数据提取、支撑各部门相关的报表、监控数据异常和波动,找出问题、输出专题分析报告。

在日常工作中,业务部门往往更关心某个指标的为什么下跌或上升、产品的用户属性是怎样的,如何更好的完成自己的KPI等。

以活跃指标为例,数据分析人员通常要解决以下问题:

  • 指标下跌了多少?是合理范围内的数据波动,还是突发式?(what)

  • 下跌是从什么时候开始的?(when)

  • 是整体用户下跌,还是部分用户?(who)

  • 下跌的原因是什么?产品更新?还是某个渠道推广到期?(why)

  • 怎么解决下跌的问题(how)

  • 在经过了数据提取-数据清洗-多维分析-交叉分析等一系列步骤之后,你发现是某个地区的活跃下跌了,但这并不能作为分析的结论。因为某个地区的活跃下跌只是现象,并不是根本原因。

    所以数据分析师要解决的是,为什么这个地区的活跃跌了?是政策因素?还是竞争对手?或者是渠道问题,这些都是需要深入分析的范畴。

    找到原因后,数据分析师还需要预测未来的发展趋势,根据目前的分析结果输出可执行的改善策略,最后推动业务部门落地,再次复盘效果,最终形成闭环的分析路径。

    对数据分析师而言,解决问题只是一方面,另一方面数据分析师的职责是将业务数据体系化,形成一套指标框架。比如活跃下跌,本质上也是指标问题,如“日活”等指标。

    技术方向的岗位如数据挖掘/算法专家等岗位有的归在研发部门,有的则单独成立数据部门。与业务方向的数据分析师相比较来说,数据挖掘工程师要求更高的统计学能力及编程技巧。因为数据挖掘工程师对工具的要求比较高,所以数据挖掘的平均薪资也会高于数据分析师。

    数据分析师岗位技能要求

    对业务方向的数据分析师而言,掌握工具只是基础,还需要对业务有深入的理解以及较强的数据分析能力。

    在工具使用上,数据分析师需要掌握Excel、SQL、PPT、Python等工具。

  • Excel是日常工作中用到的最多的工具,常用的函数及数据透视表都要学。

  • SQL是数据分析的核心工具,主要学习Select、聚合函数以及条件查询等内容。

  • Python重点掌握Pandas数据结构、Matplotlib库、Pyecharts库及Numpy数组。

  • 关于工具的部分,需要注意不同行业对工具的要求会有差异,比如金融行业会要求SAS等工具。一般情况下Excel、SQL、PPT、Python这4种工具就能搞定大部分数据分析工作。

    除工具的使用外,数据分析师要了解基本的统计学知识及数据分析方法。

  • 统计学知识:环比、同比、概率分布、变量、抽样等。

  • 数据分析方法:假设检验、回归分析、漏斗分析、多维分析、对比分析等。

  • 针对0基础的小伙伴,建议大家先将精力放在数据分析的思路和训练上,多去看一些商业数据模型和数据分析案例的资料,最终形成自己的分析思路。千万不要一上来就啃Python,可以先上手Exce+SQL这2个简单的数据分析工具来入门。有SQL基础后再学Python会相对容易些。


    数据分析师的成长路线

    业务方向的数据分析师有2条发展路径。

  • 一条是专精业务,晋升成为商业分析师、战略分析师或管理岗。从业务型发展上来的好处是具备商业网洞察能力,这点是直接做数据挖掘所不具备的。

  • 另一条是提升技术能力,成长为算法专家或数据科学家。


  • 如何快速入门数据分析

    应届生想要入行数据分析,建议先做学习规划:

  • 明确自己想走业务方向还是技术方向。

  • 充分调研目标领域的行业知识,了解行业背景及行业相关的指标(在行业的选择上,擅长的、热爱的和有发展前景的即是最佳行业领域)

  • 了解目标行业常用的数据处理工具、数据生产流程及数据应用。针对数据工具进行系统性学习。

  • 0基础转行数据分析,建议先罗列自己的个人优势和行业背景,找到最佳突破口:

  • 如果有运营相关经验,基础工具掌握一般,可以先学习SQL,再从数据运营岗入门。

  • 如果有产品经验,对交互设计和用户体验有深入的理解,可以选择数据产品经理。

  • 如果有金融、物流等行业工作经验,可以借用行业优势,转到相关行业的数据分析岗位。

  • 也就是说,转行数据分析的路径不只有一条,我们要做的是根据自己的背景及优势,找到最适合自己的那条路。


    总结:

    作为一名合格的数据分析师,你需要至少以下三点技能:

  • 必要的SQL、Excel+pythonR技能;

  • 正确的理解业务;

  • 基本的数据使用意识和学习能力。

  • 转行过程中个人必要技能的锤炼是很重要,但保持良好积极的心态也是转行成功的必备要素之一。

❷ 数据分析职业规划怎么回答

数据分析,职业规划可以这样来回答首先要从数据分析的基层工作做起,并且在工作的过程中不断提升自己的能力,然后达到中等以上的职业等级。

❸ 数据分析师如何做好职业规划

近些年,互联网公司对数据分析师岗位的需求越来越多,国家“十三五”规划将大数据确立为国家战略。

大数据的价值被越来越多的个人和企业高度认知,学习大数据、玩转大数据,成为现阶段最热谈资,也是很多企业最迫切要实现的目标。而且预计到2018年大数据分析专业人才缺口将达到1500000人甚至更多。

数据分析师是做什么的

大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。

而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。

关于数据分析师的职业发展

1、数据产品经理

数据产品经理必须了解不同的公司,在不同的阶段,需要哪些数据产品,并能够制作出来,这是此职位的核心要求。其次,数据产品经理必须有足够的数据分析能力,如果有了数据分析的思维,再跟公司业务结合就会比较容易。最后,数据产品经理是产品经理的一种,所以要同时具备产品经理的能力:了解用户,需求调研,方案设计,协调技术、测试、设计等。

2、数据运营

数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。

3、管理或战略

事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。

4、数据科学家

随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。

如何成为一个数据分析师

不是数据专业并不影响你的选择技能很重要学习能力(数据分析师需要不停学习的)圈子,能了解相互沟通招聘职业规划证书(CPDA数据分析师证书)数据分析师职业操守专业扎实行业知识很清楚业务很理解

数据分析师证书的含金量

CPDA数据分析师证书为“双向认证”(工信部+中国数据分析行业主管协会)认证,并且数据分析师证书可以在工业信息化考试中心官网查询。而且“CPDA数据分析师证书”还可以成立“数据分析师事务所”。

而且,凡在2018年度考取CPDA数据分析师证书的所有学员(含2017年第四季度考生)均可享受协会一年会籍服务。

服务内容:

享受创办数据分析师事务所的优惠政策获得我会全年会员电子特刊《中国数据分析》可在我会官网、公众号、会刊上投稿,提高个人在行业影响力参加我会2018年组织的各种会议活动,如2018年中国数据分析行业十周年庆典峰会,各类学术研讨会、公益沙龙、创业指导等享受一次执业教育,提升自身研究能力享受推荐就业服务

❹ 大数据规划的五个步骤

大数据规划的五个步骤
数据分析的未来将朝着更为普及化、更为实时的数据分析去迈进,也就是说“针对正确的人,在正确的时间,获得正确的信息”,从这个意义来说,它已经超越了技术本身,是更为接近业务层面的实时分析。
对于一个成功企业来说,数据整合能力、分析能力和行动能力不可或缺。如果不具备完善的数据整合、分析和行动能力的企业迟早面临被淘汰的风险。在经营环境发生巨变的情况下,任何企业都必须在大数据规划上做好准备,这样才能抢先竞争对手发现市场新的趋势。
三种能力
我们建议企业和政府机构进行数据整合能力、分析能力和行动能力的建设。对于任何公司的管理层来说,要充分认识到数据的重要性,在管理层充分认识到数据的重要性之后,内部要有足够的人员和能力去整合、搭建和完善数据管理基础架构。有了海量数据之后,数据分析师能够对其进行分析和挖掘,使其产生理想的价值。
数据分析能力通过一定的方法论可以获得。这个方法论从宏观的角度来看,是通过数据整合探索出有效的业务价值,进而精确地协助制定商业策略或服务提升的策略,有效地采取正确的行动,来协助业务和服务质量的增长,或是解决业务已知、不确定或发现未知的问题。
另外,数据要实现普及化,不仅掌握在管理层手中,在数据安全和权限管理的机制下,企业或单位的每一个人都要了解自己的业务具体发生了什么,为何发生,预测将要发生什么情况,从而更快、更好地做出决策,最终达到智慧型的管理,通过一些主动式的事件,产生正确的行动,如业务增长的价值措施和办法,来精确有效地提升业务的增长。
五个步骤
如今大数据已经远远超出了IT的范畴,也就是说所有部门都在大数据运用的范畴中。
大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产生价值。场景因需求不同而包罗万象:例如企业在精确营销方面提升业务增长,对于其客户在购买哪些产品前的黄金路径统计分析等等。
其次,直接产生的价值需要与已有的客户关系管理、客户交易等数据进行结合和关联,从而为企业产生总体的关键价值效益。例如,哪些用户在购买前确实通过上述统计总结的黄金路径,而这些用户和该企业的历史关系为何,以提供企业下一步精确行动的优先顺序等等。
第三,整个企业要建立大数据分析的支持体系、分析的文化、分析数据的人才,彻底形成企业对大数据的综合管理、探索、共识。大数据能力的建设是企业或政府单位内上下及跨部门就如何提供更加智慧型服务和产品给用户的议题。
第四,随着大数据探索范围的扩大,企业要建立大数据的标准,统一数据格式、采集方法、使用方式,设定一个共享的愿景和目的,然后按照阶段化的目标去实现愿景。例如,有关数据的存储和处理长期围绕在关系型的结构数据中,提供更加智慧型服务和产品是需要结合过去难以处理分析的数据,如文本、图像等等。数据内容快速演变,因此对数据的标准、格式、采集、工具、方法等的治理能力必须与时俱进。
第五,最终建成企业或政府单位内的“统一数据架构”,从各类所需的多元的结构化数据源建立整合能力(采集、存储、粗加工)。在此基础上,建设数据探索和分析能力(从整合出来的海量数据里快速探索出价值),之后如何有效、实时、精确地与已有的业务数据结合,产生精确的业务行动能力(进行更深度的利用和提供更智慧型的服务),从而达到“针对正确的人,在正确的时间,正确的方式,提供正确的信息”的目标。