大数据实战
A. 企业在大数据营销实战过程中要注意些什么
近年来,以互联网、移动互联网为基础的信息化、全球化趋势,已经深入的改变了我们的生活模式、生产模式、竞争模式。随着大数据时代的到来,对于精准营销的需求也正在上升。如何通过技术手段,挖掘大数据下的深层次关系,让营销更准确、有效已经成为营销中重中之重。
1、对营销决策数据进行更好的优化。
一个优秀的大数据系统不仅可以用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,从而影响营销决策,帮企业建立更完美的营销战略。
2、对目标对象进行更完整的深度分析。
通过获取更丰富的消费者数据,包括网站浏览数据、社交数据和地理追踪数据等,可以绘制出更完整的消费者行为。譬如,大数据技术能对客户方方面面的信息进行充分有效的管理并深度挖掘。利用大数据分析,可以为特定客户群体提供更有针对性的个性化服务。
3、实现点对点智能广告模式。
企业广告投入的核心问题在于:如何从海量数据中寻找目标受众,并投放相应的广告信息。大数据能通过互联网点击流,跟踪个体用户的行为,更新其偏爱,并实时模仿其可能的行为,让点对点的精准广告投放成为可能。
4、更好地进行顾问式营销。
比如当一个顾客进入店铺后,一个零售商利用(小蜜蜂获客神器)获取到该顾客的资源后通过大数据技术分析他们的消费属性,发现这位顾客是其希望留住的有价值顾客,之后他们通过其过去的购物历史获得这位顾客的综合信息分析,从而确定所售卖物品的合适价格和零售商可以退让的利润空间,并最终针对这一顾客给出最佳的优惠策略和个性化的沟通方式。
但是在实施过程中需要注意以下方面的问题:
1、要明确企业的营销方向,获取的大数据是否能真的对本企业的营销起到帮扶性的作用。确定好方向之后才能知道如何去布局,或者如何利用这个大数据到营销的突破口。
2、不论是利用大数据去做相关的技术性的营销,还是传统的电话营销或者是邮件营销都需要遵循相关的法律和相关的规定,不要触及法律红线和相关行业的规则。
3、要随时注意总结企业通过大数据营销过程中所得到的数据和相关的经验,这是大数据营销的过程是最重要、最有意义和最具备经验参考的一个环节。
帮忙回答一下吧,里面的小蜜蜂我用括号括起来了,你可以加粗,发的时候把括号去掉哦
B. 企业大数据实战案例
企业大数据实战案例
一、家电行业
以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。
目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。
基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。
那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。
一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。
该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。
二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。
该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。
二、快消行业
以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。
此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。
实现过程:
1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;
2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;
3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。
因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。
三、金融行业
对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。
在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。
以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货