A. 面板数据模型估计一般要做哪些步骤

步骤一:分析数据的平稳性(单位根检验)。

按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

步骤二:协整检验或模型修正。

情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。

所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。

步骤三:面板模型的选择与回归。

面板数据模型的选择通常有三种形式:

一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。

一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。

一种是随机效应模型。

(1)面板数据协整检验扩展阅读:

面板数据模型可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。

其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量。

ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程。

lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。

B. 面板数据的研究方法

面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。在本文的研究中,我们首先运用面板数据的单位根检验与协整检验来考察能源消费、环境污染与经济增长之间的长期关系,然后建立计量模型来量化它们之间的内在联系。
面板数据的单位根检验的方法主要有 Levin,Lin and CHU(2002)提出的LLC检验方法[5]。Im,Pesearn,Shin(2003)提出的IPS检验[6] , Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验[7]等。面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。Luciano(2003)中运用Monte Carlo模拟[10]对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。具体面板数据单位根检验和协整检验的方法见参考文献[5-10]。

C. 面板数据分析方法总结

面板数据分析方法总结

横截面的异方差与序列的自相关性是运用面板数据模型时可能遇到的最为常见的问题,此时运用OLS可能会产生结果失真,因此为了消除影响,对我国东、中、西部地区的分析将采用不相关回归方法( SeeminglyUnrelated Regression, SUR)来估计方程。而对于全国范围内的估计来说,由于横截面个数大于时序个数,所以采用截面加权估计法(Cross SectionWeights, CSW) 。
一般而言,面板数据可用固定效应(fixed effect) 和随机效应(random effect) 估计方法,即如果选择固定效应模型,则利用虚拟变量最小二乘法(LSDV) 进行估计;如果选择随机效应模型,则利用可行的广义最小二乘法(FGLS) 进行估计(Greene ,2000) 。它可以极大限度地利用面板数据的优点,尽量减少估计误差。至于究竟是采用固定效应还是随机效应,则要看Hausman 检验的结果。
单位根检验:在进行时间序列的分析时,研究者为了避免伪回归问题,会通过单位根检验对数据平稳性进行判断。但对于面板数据则较少关注。随着面板数据在经济领域应用,对面板数据单位根的检验也逐渐引起重视。面板数据单位根的检验主要有Levin、Lin 和Chu 方法(LLC 检验) (1992 ,1993 ,2002) 、Im、Pesaran 和Shin 方法( IPS 检验) (1995 ,1997) 、Maddala 和Wu 方法(MW检验) (1999) 等。
协整检验:协整检验是考察变量间长期均衡关系的方法。在进行了各变量的单位根检验后,如果各变量间都是同阶单整,那么就可以进行协整检验了。面板协整检验理论目前还不成熟,仍然在不断的发展过程中,目前的方法主要有:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(i1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et a(l2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法。这种检验的方法是检验变量存在共同的协整的秩。
一般的顺序是:先检验变量的平稳性,当变量均为同阶单整变量时,再采用协整检验以判别变量间是否存在长期均衡关系。如果变量间存在长期均衡的关系,我们可以通过误差修正模型(ECM) 来检验变量间的长期因果关系;如变量间不存在协整关系,我们将对变量进行差分,然后通过向量自回归模型(VAR),检验变量间的短期因果关系。

D. Eviews 面板数据的单位根检验序列平稳还用做协整检验吗

是的,得同阶单整才能做协整,这是协整基本定义。建模的话就需要要用平稳序列。但你的数据可以不用做协整,可以直接用单整的平稳序列建模。