造数据工具
⑴ 有哪些值得推荐的数据可视化工具
NO1. 我个人最喜欢的:
http://Visual.ly Visually | Content Marketing for Brands
http://Visual.ly 用社交网络功能来连接在世界各地的所有成员。设计师们通过提交自己的项目进入他们的网站画廊,从而能够对数据实现可视化。它理想的目标是提供一个接口,用于直接在浏览器中创建动态的信息图表。该工具目前未发布,虽然我听说过一些私人beta测试。你可以注册您的电子邮件地址以接收更新消息,并可能邀请测试。至于他们的网络功能,http://Visual.ly 提供了极少数的合作伙伴页面。这些类似于个人资料页面,您可以查看评论,喜欢,意见和信息图表意见,但这些都是有针对性的对大品牌 - 国家地理、易趣、Skype、CNN 等。
NO2.
Better World Flux
Better World Flux
这是一款漂亮的可视化工具!Better World Flux 是一个可以互动信息、图形的网站。选择一个国家,根据指示操作,比如可以选择预期寿命或饮水作为指标。
NO3.
We Feel Fine
We Feel Fine / by Jonathan Harris and Sep Kamvar
We Feel Fine 标榜为人类情感而探索,这是我见过最独特的可视化引擎之一。开始前要点击其主页上的大按钮,该应用程序将据此加载操作系统。
沿上面一行,你会发现飞出选项对数据进行排序。其标准包括年龄,性别,气候位置,甚至日期。该项目提供了整个世界的喜怒哀乐情绪,在任何给定的点,数据超级详细!这是对人类来说,真正令人震惊的实验。
当你点击画布的任何地方,飞球会分散。如果您将鼠标放在他们中的一个,它会提供更多的细节,点击打开,顶部有一个全新的选项。许多结果都来自Twitter。情绪和情感的数据数量级是令人难以置信。
NO4.
Rss Voyage
Rss Voyage - RSS feed reader with a difference
另一个我个人最喜欢,且确实有助于形象化各地数据的网络数据的网站。如果您登录到Rss Voyage, 你可以导入自定义RSS供稿到您的帐户一整个数据图。在他们的网页,你可以点击“开始”与默认提供的应用程序。在这种情况下Rss Voyage将拉动几个流行的博客,如纽约时报,瘾科技,卫报,等等。
如果您通过移动图形,点击一个特定的文章的观点时,他将固定在屏幕上。这包括标题,简短描述,元数据连同它的URL出版日期。如果在任何时候你想开始创建自己的RSS可视化,所有你需要做的就是创建一个帐户!
注册是完全免费的,你可以在页面的底部创建通过注册表格您的帐户。作为另一奖励功能
Rss Voyage可以让你轻松设置全屏模式浏览风格的RSS源。
NO5.Revisit
moritz.stefaner.eu
客观来讲,Revisit是一种重新定义我们如何看待微博的工具。有了这个工具,你可以与一个或多个关键字的数据创建连接。您可以将额外的标题添加到您的图形和分享的链接(甚至到微博) 。
点击一个单独的分离线,关闭图形将显示更多细节。通常包括元数据,如时间发布和相关的关键字。搜索条件仅限于标准的Twitter符号,使用逗号分隔的关键字列表。
如果有兴趣,我建议查看位于同一网站的创作数据可视化等项目。Truth & Beauty
NO6.
Tag Galaxy
Tag Galaxy
Tag Galaxy是一个非常独特的可视化工具。他们的主页干净且易于理解,因为标签Flickr上有单独的一个搜索表单。此外左下角设有为新用户一些流行的建议。只需输入一个词,然后按Enter,通过Flickr的照片就可在Tag Galaxy查询。
他们的渲染引擎复制我们的太阳系的中心,太阳代表主要搜索项的外观,外部行星的轨道代表类似的标签。这是我见过的最酷的可视化演示渲染和Flash之一。
注意,当您在每个星球上悬停它会为你提供一个小的预览数。这是发现在Flickr的该标签的询问的照片总数。点击太阳将打开相关照片缩略图的球体,而旋转的行星会增加他们的搜索字词的查询。当然,你可以找到更多有关照片通过点击弹出完整视图。
NO7.
Google Fusion Tables
About Fusion Tables
我们都知道的龙头企业是谷歌。他们的实验室的后面几年已经运行了一些很有趣的实验,Google Fusion Tables就是其中之一。你需要的是一个谷歌账户。此工具可以公开在网上共享数据,并建立自定义的可视化图形。
这些可以从csv或Excel电子表格导入。尽管目前并不支持。登录后,会发现公共数据列表的表格与演示。这些都在不断更新,新的用户提交 ,打开文档后,顶部的工具栏会有其他菜单可视化链接,自定义图形。
NO8.
Dipity
没有什么比我们在地球上的历史更有趣。已经有很多的事件在过去10年到20年,更不用说十年到百年! Dipity 是一个奇妙的工具,他用来创建和嵌入自定义的互动时间表。用户可以在重要日期进行标记,包括照片,链接,音频,视频和其他形式的媒体。
该服务需要您在创建时间表前注册一个帐号。选择一个免费的计划,在日后他们提供升级到保费计划。幸运的是,该网站会提供公共的最流行的时间表成员,所以你可以很容易地通过排序动态时间表去发现一个令人兴奋的细目清单。我个人最喜欢的是史蒂夫工作的生活和事业照片甚至直到2011完全格式化。
NO9.
WIkiMindMap
WikiMindMap
说到独特的展示台,维基网络也是一个网络,虽然你没有看到尽可能多的开发商,但是Wiki包含一个大的离谱的数据量! WikiMindMap可以让你选择一个区域,然后输入网址的页面。
如果您的关键字不完全匹配了一个页面,应用程序将提供给您最亲近的建议。圆圈内产生的链接将引出到主Wiki页面,而刷新链接打开的选项的树。这些都是相关的链接拉断主维基页面协调您的关键字。它也很容易通过点击链接刷新图标切换到一个新的根节点。
NO.10
Axiis- Browser Market Share
Axiis 是用于数据可视化软件的最流行的网站之一。在他们的网页,你可以把酷炫的程序下载到您的PC或Mac电脑上运行。
W3Schools已经记录用户和跟踪浏览器几年了。 Axiis编制从2002到2009与最流行的Web浏览器形成一个美丽的可视化图形。和众多上市的包括Safari浏览器,网景,IE浏览器和谷歌Chrome浏览器合作。名单尚未更新为2010/2011 ,但我们可能会看到公布在未来数月更新的信息图表。
国内的话,做得好的应该是财新的数据新闻实验室和网易了。
⑵ 常用的大数据工具有哪些
1. 开源大数据生态圈
Hadoop HDFS、Hadoop MapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
开源生态圈活跃,并免费,但Hadoop对技术要求高,实时性稍差。
2. 商用大数据分析工具
一体机数据库/数据仓库(费用很高)
IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。
数据仓库(费用较高)
Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
数据集市(费用一般)
QlikView、 Tableau 、国内永洪科技Yonghong Data Mart 等等。
前端展现
用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用于展现分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、国内永洪科技Yonghong Z-Suite等等。
⑶ 5个常用的大数据可视化分析工具
1.Tableau
Tableau 帮助人们快速分析、可视化并分享信息。它的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。数以万计的用户使用 Tableau Public 在博客与网站中分享数据。
2.ECharts
Echarts可以运用于散点图、折线图、柱状图等这些常用的图表的制作。Echarts的优点在于,文件体积比较小,打包的方式灵活,可以自由选择你需要的图表和组件。而且图表在移动端有良好的自适应效果,还有专为移动端打造的交互体验。
3.Highcharts
Highcharts的图表类型是很丰富的,线图、柱形图、饼图、散点图、仪表图、雷达图、热力图、混合图等类型的图表都可以制作,也可以制作实时更新的曲线图。
另外,Highcharts是对非商用免费的,对于个人网站,学校网站和非盈利机构,可以不经过授权直接使用 Highcharts 系列软件。Highcharts还有一个好处在于,它完全基于 HTML5 技术,不需要安装任何插件,也不需要配置 PHP、Java 等运行环境,只需要两个 JS 文件即可使用。
4.魔镜
魔镜是中国最流行的大数据可视化分析挖掘平台,帮助企业处理海量数据价值,让人人都能做数据分析。
魔镜基础企业版适用于中小企业内部使用,基础功能免费,可代替报表工具和传统BI,使用更简单化,可视化效果更绚丽易读。
5.图表秀
图表秀的操作简单易懂, 而且站内包含多种图表,涉及各行各业的报表数据都可以用图表秀实现, 支持自由编辑和Excel、csv等表格一键导入,同时可以实现多个图表之间联动, 使数据在我们的软件辅助下变的更加生动直观,是目前国内先进的图表制作工具。
关于5个常用的大数据可视化分析工具,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。