㈠ 金融数据的尖峰厚尾特征是什么意思

金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。

但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。

厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。

直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。

(1)金融数据特点扩展阅读:

基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。

但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。

而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。