Ⅰ 集中式数据处理和分布式数据处理的优缺点

集中式数据处理优点:

1、部署结构简单。

2、数据容易备份,只需要把中央计算机上的数据备份即可。

3、不易感染病毒,只要对中央计算机做好保护,终端一般不需要外接设备,感染病毒的几率很低。

4、总费用较低,中央计算机的功能非常强大,终端只需要简单、便宜的设备。

缺点:

1、中央计算机需要执行所有的运算,当终端很多时,会导致响应速度变慢。

2、如果终端用户有不同的需要,要对每个用户的程序和资源做单独的配置,在集中式系统上做起来比较困难,而且效率不高。

分布式数据处理优点:

1、分布式网络中的每台机器都能存储和处理数据,降低了对机器性能的要求,所以不必购买昂贵的高性能机器,这大大降低了硬件投资成本。

2、扩展性极佳。在当前系统存储或计算能力不足时,可以简单地通过增加廉价PC机的方式来增加系统的处理和存储能力。

3、处理能力极强。庞大的计算任务可以在合理分割后由分布式网络中的机器并行地处理

缺点

1、计算程序全负荷运行时仍会对计算机的各个部件造成一定压力。

2、对项目方来说,参加分布式计算的志愿者不是项目方自己的人员,不是全体可信任,因此必须引入一定的冗余计算机制,才能防止计算错误、恶意作弊等。



(1)联合数据系统扩展阅读

分布式计算为信息不只分布在一个软件或计算机上,而是分布于多个软件上,可以用多台或一台计算机同时运行若干个软件,通过网络实现信息的共享。与其他算法相比,分布式算法有明显的优势:

1、共享资源更加方便。

2、能够实现计算负载的平衡,用多台计算机同时处理任务。

3、可以根据实际需要合理选择适当的计算机运行该程序。计算机分布式计算的灵魂是平衡负载和共享资源。分布式计算具有高效、快捷、准确的优势