『壹』 无线传输的方式及原理

无线传输的方式及原理:
无线传输分为:模拟微波传输和数字微波传输两种方式。
一、模拟微波传输原理:
模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机(Microsat 600AM)解调出原来的视频信号。如果需要控制云台镜头,就在监控中心加相应的指令控制发射机(HD-2050),监控前端配置相应的指令接收机(HD-2060),这种监控方式图像非常清晰,没有延时,没有压缩损耗,造价便宜,施工安装调试简单,适合一般监控点不是很多,需要中继也不多的情况下使用。其弱点是:抗干扰能力较差,易受天气、周围环境的影响,传输距离有限,已逐步被数字微波、COFDM、3G、CDMA等取代。
二、数字微波传输原理:
数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,最后还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数字视频监控价根据实际情况差别很大,但也有一些模拟微波不可比的优点,如监控点比较多,环境比较复杂,需要加中继的情况多,监控点比较集中它可集中传输多路视频,抗干扰能力比模拟的要好一点,等等优点,适合监控点比较多,需要中继也多的情况下使用,客观地讲,前期投资较高。

『贰』 无线传输数字微波传输原理是什么

一、模拟微波传输原理:
模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机(Microsat 600AM)解调出原来的视频信号。如果需要控制云台镜头,就在监控中心加相应的指令控制发射机(HD-2050),监控前端配置相应的指令接收机(HD-2060),这种监控方式图像非常清晰,没有延时,没有压缩损耗,造价便宜,施工安装调试简单,适合一般监控点不是很多,需要中继也不多的情况下使用。其弱点是:抗干扰能力较差,易受天气、周围环境的影响,传输距离有限,已逐步被数字微波、COFDM、3G、CDMA等取代。
二、数字微波传输原理:
数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,最后还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数字视频监控价根据实际情况差别很大,但也有一些模拟微波不可比的优点,如监控点比较多,环境比较复杂,需要加中继的情况多,监控点比较集中它可集中传输多路视频,抗干扰能力比模拟的要好一点,等等优点,适合监控点比较多,需要中继也多的情况下使用,客观地讲,前期投资较高。

『叁』 无线数据传输技术的种类、各自优势、适用范围

无线数据传输可分为公网数据传输和专网数据传输。
公网无线传输:GPRS,2G,3G,4G等;
专网无线传输:MDS数传电台,WiFi,ZigBee等。
无线数据传输设备可与PLC、RTU等数据终端相连接。
无线数传设备通常为DTD433M频段,可以提供高稳定、高可靠、低成本的数据传输。它提供了透明的RS232/RS485接口,具有安装维护方便、绕射能力强、组网结构灵活、大范围覆盖等特点,适合于点多而分散、地理环境复杂等应用场合。
该设备提供点对点通信,也可以实现点对多点通信,不需要编写程序,不需要布线。一般电工调试也可以通过。无线数据传输设备广泛应用于无线数传领域,典型应用包括遥控、遥感、遥测系统中的数据采集、检测、报警、过程控制等环节。

『肆』 短距离无线通信 1. 数字数据应该怎样传输 2. 信道容量和什么相关 3. 复用技术有哪些

一、数据信号数字传输的概念及特点

在数字信道中传输数据信号称为数据信号的数字传输,简称位数字数据传输。所位数字信

道就是通过对语声信号进行 PCM 处 理后的数字化语声信号的多路复用信道。

数字数据传输主要有下述两个优点:

(1)传输质量高,由于数据信号本身就是数字信号,直接或经过复用即可在数字信道上传

输,无需经过调制和解调变换,另外, 用数字传输的方法可以通过再生中继传输,无噪声积累

,这都是 将导致数据传输质量都大大提高。

(2)信道传输效率高,一个话路道传输速率可为 64 kbit/s 的数据,较低速率的数据可

通过时分复用到 64 kbit/s ,占用一个话路的速率来传输,显然这比采用调制解调的传输方式

的传输效率高。

二、数字数据传输的实现方式

1 、同步方式

这里的“同步”时值数据终端设备 DTE 发出的数据信号和待接入的 PCM 信道的始终是相

互同步的。采用这种方式可实现同步时分复用,能充分利用 PCM 信道的传输量,这种同步传

输方式的缺点是,由于所有的 DTE 都处于受控的从属地位,数据传输系统的灵活性较差。

2 、异步方式

如果 DTE 发出数据信号的始终与 PCM 信道时钟是非同步的, 即没有相互控制关系,则成

为异步方式。异步传输方式通常采用的方式是代码变化的取样法和脉冲塞入调整法。

这种实现方式较简单、灵活,但出书效率低,不能充分利用 PCM 信道的传输量,并会使传

输信号有较大的时间抖动。

三、数字数据的时分复用 —TDM

1 、时分复用的概念及复用方式

为了提高信道利用率,在传输过程中一般拆用多路复用的传输方式。所位多路复用九十多

个信号在同一条信道上传输。所位时分就是用不同的时间段来去分布同信源的信号。

数字数据传输中的时分复用九十将多个低速的数据流合并成高速的数据流,而后在一条信

道上传输。

根据旋转开关在低速信道上停留时间的长短 , 可以把 TDM 分为比特交织和字符交织两种

方式。比特交织服用又称按字复用。再高数数据信号集合帧里,没送完一个低速信道的一个字

符,在送下一个低速信道的字符。

2 、数字数据传输的包封复用方式

在数字数据传输中, CCITT( 现为 ITU-T) 颁布了 X.50 建议和 X.51 建议来规范将用户

数据流复用成 64bit/s 的复用信号包封方法。 其中 X.50 建议规定采用 6+2 的包封格式,

X.50 建议规范是采用 8+2 的包封格式,其两种包封格式如图 3-86 所示。

由于目前的 PCM 通信系统是以 8 比特位传输单位 , 因此 , 采用 6+2 包封格式形成的复

用帧更易于与现用的 PCM 数字通信系统配合 , 有利于实现 , 所以 , 当前国际上较多采用

X.50 的 6+2 包封复用。

四、数字数据传输的构成

数字数据传输系统构成示意图如图 3-87 所示。从信号传输等方面看主要包括本地传输系

统和交叉连接与服用两个部分。

1 、本地传输系统

本地传输系统是指从用户终端至本地句之间的数字传输系统, 即通常所称的用户环路传输

系统。

DSU 是 DTE 与用户线路的接口设备。 DSU 完成数据信息的包封、线路信号的形成、发送

与接收、定时信号的提取与形成以及各项接口控制功能等。

经包封以后再降速率调整为 64bit/s 以下的四种承载速率中的一 种,及 3.2bit/s ,

64bit/s , 12.8bit/s 或 64bit/s 之一送往线路传输。

经线路传输后送与本地句内的用户线路终结设备,图中记作 OCU (局内信道单元)以及它

的公共控制部分 OCUCOM 。 OCU 完成与用户新路的接口、发送与接收线路信号, OCUCOM 完成

用户线路信号与局内信号的相互转换。为了便于转接,不论用户线路的承载速率是 3.2bit/s

, 64bit/s , 12.8bit/s 或 64bit/s 中的哪一种速率,在局内经 OCUCOM 统一转换成

64bit/s 的通用信号 DSO ,图 3-89 所示 12.8bit/s 的线路承载速率信号转换成 64bit/s 的

通用信号 DSO 的示意图。

2 、交叉连接和服用

由 OCUCOM 输出的具有填充数据包封的 64bit/s 的通用信号 DSO 送入交叉连接系统,或

者相互间进行交叉连接或一点到多点多分支联接,即可送入道复用器 DO-MUX 的输入端。经交

叉连接后送入 DO-MUX 输入端的信号仍然是 64bit/s 的通用信号 DSO , DO-MUX 的作用时取

出填充的包封并实施多路复用,复用合成后 即为 PCM 的 64bit/s 的零次群数据流,即

64bit/s 的多路复用信号,其 DO-MUX 信号变换示意图如图 3-90 所示。从通用信号中取出 5

个吸 纳共同的数据包封的一个,并与其他的信道取出的包封组合合成, 就能实现 5 个信道

的多路复用,如图 3-87 所示,第二及服用就是将 DO-MUX 输出的 64bit/s 的零次群信号送入

01-MUX 进行多路复用, 复用后即为一次群速率 2.048bit/s ,即可送于局间数字传输线路。

信道容量:根据信道的统计特性是否随时间变化分为: ①恒参信道(平稳信道):信道的统计特性不随时间变化。卫星通信信道在某种意义下可以近似为恒参信道。 ②随参信道(非平稳信道):信道的统计特性随时间变化。如短波通信中,其信道可看成随参信道 信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。对不同的输入概率分布,互信息一定存在最大值。我们将这个最大值定义为信道的容量。一但转移概率矩阵确定以后,信道容量也完全确定了。尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。其中必有一个试验信源使互信息达到最大。这个最大值就是信道容量。 信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
复用技术:复用技术是指一种在传输路径上综合多路信道,然后恢复原机制或解除终端各信道复用技术的过程。复用技术基本实现过程如下所示: 频分复用(FDM) ― 载波带宽被划分为多种不同频带的子信道,每个子信道可以并行传送一路信号。FDM 用于模拟传输过程。 时分复用(TDM) ― 在交互时间间隔内在同一信道上传送多路信号。TDM 广泛用于数字传输过程。 码分复用(CDM) ― 每个信道作为编码信道实现位传输(特定脉冲序列)。这种编码传输方式通过传输唯一的时间系列短脉冲完成,但在较长的位时间中则采用时间片断替代。每个信道,都有各自的代码,并可以在同一光纤上进行传输以及异步解除复用。 波分复用(WDM) ― 在一根光纤上使用不同的波长同时传送多路光波信号。WDM 用于光纤信道。WDM 与 FDM 基于相同原理但是它应用于光纤信道上的光波传输过程。 粗波分复用(CWDM) - WDM 的扩张。每根光纤传送4到8种波长,甚至更多。应用于中型网络系统(区域或城域网) 密集型波分复用(DWDM) - WDM 的扩展。典型的 DWDM 系统支持8种或以上波长。显现系统支持上百种波长。

『伍』 无线数据传输的方法有几种,指哪些

无线数据传输的方法如下:

一、2.4G无线数据传输

2.4G模块的低功耗设计,理想的传输距离为1.5公里,通常用于传输距离相对较短的数据收集。

二、433M无线数据传输

433M模块,信号强,传输距离长,理想的传输距离约为3公里,还具有很强的穿透和衍射能力,并且在传输过程中的衰减很小。,

三、GPRS无线数据传输

GPRS模块,传输距离不受限制,传输数据量大,安全稳定,通常用于远程数据的采集和传输。

四、NB-IOT低功耗广域网无线数据传输

NB-IOT的特征主要体现在四个方面:

1、首先,广泛的覆盖范围将提供更好的室内覆盖范围。在相同频带下,NB-IoT在现有网络上的增益为20dB,相当于覆盖范围增加了100倍;

2、其次,凭借支持大规模连接的能力,NB-IoT部门可以支持100,000个连接,支持低延迟敏感性,超低设备成本,低设备功耗和优化的网络架构;

3、第三,更低的功耗,NB-IoT终端模块的待机时间可以长达10年;

4、第四,模块成本较低。

(5)无线数字传输扩展阅读:

无线数据传输的优势:

1、综合成本低,性能稳定。仅需一次性投资,无需挖沟或埋管道,特别适合于室外距离较长且已经翻新的场合。

2、组网灵活,扩展性好,即插即用。管理人员可以将新的无线监视点快速添加到现有网络中,而无需为新传输而铺设网络并添加设备,从而使远程无线监视变得轻而易举。

3、维护成本低。无线监视和维护由网络提供商维护,前端设备是即插即用的免维护系统。

4、无线监控系统是监控和无线传输技术的结合,可以通过无线通信方式将不同位置的现场信息实时传输到无线监控中心,并自动形成视频数据库以备将来检索。

5、在无线监控系统中,无线监控中心可以实时获取被监控点的视频信息,该视频信息连续,清晰。