数据分析相关书籍
A. 有哪些数据分析、数据挖掘的书推荐下
1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。
难易程度:非常易。
2. 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。
难易程度:非常易。
3. 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。
难易程度:易。
4. 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。
难易程度:中。
5. Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。
难易程度:中。
6. 推荐系统实践 (豆瓣) 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
难易程度:中上。
7. 数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。
难易程度:中上。
8. The Elements of Statistical Learning (豆瓣) 这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。
难易程度:难。
9. 统计学习方法 (豆瓣) 李航老师的扛鼎之作,强烈推荐。
难易程度:难。
10. Pattern Recognition And Machine Learning (豆瓣) 经典中的经典。
这些都是在“绿色BI论坛”http://www.powerbibbs.com 找到的,这个论坛经常有数据分析的干货分享,你可以看一下。
B. 自学数据分析需要看哪些书的
一、整体了解数据分析——5小时
新人们被”大数据“、”人工智能“、”21世纪是数据分析师的时代“等等信息吸引过来,立志成为一名数据分析师,于是问题来了,数据分析到底是干什么的?数据分析都包含什么内容?
市面上有很多讲数据分析内容的书籍,在此我推荐《深入浅出数据分析》,此书对有基础人士可称消遣读物, 但对新人们还是有一定的作用。阅读时可不求甚解,重点了解数据分析的流程、应用场景、以及书中提到的若干数据分析工具,无需纠结分析模型的实现。5个小时,足够你对数据分析工作建立初步的印象,消除陌生感。
二、了解统计学知识——10小时
15个小时只够你了解一下统计学知识,作为入门足够,但你要知道,今后随着工作内容的深入,需要学习更多的统计知识。
本阶段推荐书籍有二:《深入浅出统计学》《统计学:从数据到结论》,要了解常用数理统计模型(描述统计指标、聚类、决策树、贝叶斯分类、回归等),重点放在学习模型的工作原理、输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。
三、学习初级工具——20小时
对于非技术类数据分析人员,初级工具只推荐一个:EXCEL。推荐书籍为《谁说菜鸟不会数据分析》,基础篇必须学习,提高篇不一定学(可用其他EXCEL进阶书籍),也可以学习网上的各种公开课。
本阶段重点要学习的是EXCEL中级功能使用(数据透视表,函数,各类图表适用场景及如何制作),如有余力可学习VBA。
四、提升PPT能力——10小时
作为数据分析人员,PPT制作能力是极其重要的一项能力,因此需要花一点时间来了解如何做重点突出,信息明确的PPT,以及如何把各类图表插入到PPT中而又便于更新数据。10个小时并不算多,但已经足够(你从来没做过PPT的话,需要再增加一些时间)。具体书籍和课程就不推荐了,网上一抓一大把,请自行搜索。
五、了解数据库和编程语言——10小时
这个阶段有两个目标:学习基础的数据库和编程知识以提升你将来的工作效率,以及测试一下你适合学习哪一种高级数据分析工具。对于前者,数据库建议学MySQL(虽然Hadoop很有用但你不是技术职位,初期用不到),编程语言建议学Python(继续安利《深入浅出Python》,我真没收他们钱……)。数据库学到联合查询就好,性能优化、备份那些内容用不到;Python则是能学多少学多少。
六、学习高级工具——10小时
虽然EXCEL可以解决70%以上的问题,但剩下30%还是需要高级工具来做(不信用EXCEL做个聚类)。高级分析工具有两个选择:SPSS和R。虽然R有各种各样的好处,但我给的建议是根据你在上一步中的学习感觉来定学哪一个工具,要是学编程语言学的很痛苦,就学SPSS,要是学的很快乐,就学R。不管用哪一种工具,都要把你学统计学时候学会的重点模型跑一遍,学会建立模型和小幅优化模型即可。
七、了解你想去的行业和职位——10+小时
这里我在时间上写了个”+“号,因为这一步并不一定要用整块时间来学习,它是贯穿在你整个学习过程中的。数据分析师最需要不断提升的能力就是行业和业务知识,没有之一。你将来想投入哪个行业和哪个职位的方向,就要去学习相关的知识(比如你想做网站运营,那就要了解互联网背景知识、网站运营指标体系、用户运营知识等内容)。
八、做个报告——25小时
你学习了那么多内容,但现在出去的话你还是找不到好工作。所有的招聘人员都会问你一句话:你做过哪些实际项目?(即使你是应届生也一样) 如果你有相关的项目经验或者实习经验,当然可以拿出来,但是如果没有,怎么办?答案很简单,做个报告给他们看,告诉招聘者:我已经有了数据分析入门级(甚至进阶级)职位的能力。同时,做报告也会是你将来工作的主要内容,因此也有可能出现另外一种情况:你费尽心血做了一个报告,然后发现这不是你想要的生活,决定去干别的工作了……这也是件好事,有数据分析能力的人做其他工作也算有一项优势。