数据挖掘吧
两个工作内容联系不大,你是学习java的,我就主要介绍数据挖掘吧
数据挖掘是提取数据、建立模型分析数据、得出结果后与需求部门进行沟通的一个职业。
举个例子:银行的事业部有很多潜在的贷款申请者,事业部向数据挖掘人员提出需求,希望能够分析哪些申请者是优质放贷对象?
数据挖掘人员首先要充分理解事业部的需求,其次要从数据库提取相关数据,提取数据的工作有些时候是由DBA来完成,好了,现在你得到了历史数据,你的任务就是通过历史数据来建立模型,分析具备什么特征的申请者是有能力还贷、不拖欠的,然后用建立好的模型来预测我们刚刚得到的新的一批申请者。
再具体一点:例如,我们通过历史数据发现,年龄大于35岁,的男性,已婚,家庭人口大于3,收入在12000元以上的申请者是理想的放贷对象,那么我们用这个标准来限定新的申请者。
当然我举的例子,为了浅显易懂,是非常简单的示意例子,实际情况要复杂得多,会涉及到个人的贷款历史、信用评估、自然属性、社会属性、资产评估等情况——就是说,数据挖掘人员是要通过数据库中的海量数据,整理出哪些是有用数据,再用这些有用的数据来分析其它部门的问题,帮助他们解决问题,或者为公司的发展提供数据依据
数据挖掘的上升方向是:数据挖掘——产品层——决策层
java是属于开发,比如开发软件、接口、应用程序等,如果一个公司需要开发数据挖掘软件,那么则需要数据挖掘知识+java开发能力,只有在这种时候,才需要两个都具备
但是一般自主开发数据挖掘软件的公司很少,第一需要消耗大量人力物力,第二市场有很多现成的软件,没必要开发。
如果你想从事数据挖掘,你必须具备:
数据挖掘模型、算法的数学知识以及一些数据分析软件(SPSS、SAS、matlab、clementine)
一些数据库相关的知识(oracle、mySQL)
了解市场、其它部门需求
当然这些都是一点一滴积累起来的,没必要一蹴而就,特别是对市场、行业的了解以及对公司其它部门的需求的理解非常重要,这决定了你能否从基础的分析人员上升到产品层、决策层,都是要在实际的工作中积累起来的
至于放弃java什么的,我觉得真的不是放弃,因为你具备了java的基础,一定能派上用场,比如技术型产品经理(face book的扎克伯格和腾讯的马化腾都是技术型产品经理),这种产品经理能够清晰的把握产品的开发过程,还有市场知识。总结起来就是没有什么东西会浪费掉,你学的所有的东西都将在工作中派上用场,只是你遇到的情况不够多不够复杂而已
B. 数据挖掘大概要学习多久
数据挖掘属于知识发现的一种,主要是从海量的数据库中寻找事物之间的关系,这是目前版业界权的主流观点,其实也是狭义的数据挖掘主要是利用数据库中的海量数据来发现事物间的关联规则;广义的数据挖掘就不只是从数据库中进行知识发现了,所挖掘的模型也就不只是关联规则了。
即便是狭义的数据挖掘也是需要相当的IT基础,数理逻辑要好一点。从应用的角度上看什么书不太清楚,从专业的角度来说,它只是人工智能领域中很小的一个分支,也没什么太高的难度。但看你的基础一点都没有,对你来说可能主要是入门的问题吧。
最好到书店买实体书,多买几本参考着看,所有的书在2个月内不管看懂了没有能全部看完,然后还有所体悟而且再看也不会烦,那我就觉得你应该是可以做这一行的。如果还是没什么头绪,说明这道门槛对你来说太高了;而如果你已经厌烦了,那很好,一两百元的书钱就避免了你浪费一生;如果2个月后你又花了500元书钱,那应该恭喜你选对了方向。
C. 网络信息与安全和数据挖掘这两块哪个更好就业一点
额,这个兴趣是关键,现在关于大数据的挖掘,以及信息爆炸的情况下信版息安全问题其实权都委值得研究,而且如果精于其中,都能有所成就。
但是,一定要选择有兴趣的,看似很好入门的,然而要精通,也是需要花费相当的时间与精力,而且有兴趣事半功们,没兴趣,赶鸭子上架的学习,会很没效率。
仅供参考,谢谢~
D. 机器学习和数据挖掘哪个更有前途
说实话,现在的时代发展确实太快了!有时候感觉根本就跟不上节奏,更别说去预测和掌控了;特别是互联网方向,各种新技术不停的冒出来。
对于数据挖掘这个方向吧,也就是最近几年突然大热起来的。结果很正常,一边是这个方向本身的飞速发展,这给了我们很多机会;但另一边是社会上各种相关甚至不相关的人才蜂拥而入,大家都想来搞搞(趋利性是人的本性)!
结果会怎样呢?这个觉得也是大家各抒己见,因为任何时候,对任何事物,总会有人唱好有人唱衰,其实没有谁说的一定是对的;只能说大部分时候,那个大群体和总趋势对的概率要大很多。所以建议你也不要偏信偏听,总归还是要有自己的批判性思维。
我个人的看法呢,照目前这种发展情况来看,数据挖掘迟早会人才饱和,造成知识红利下降,最后到达一个跟现在的Android开发差不多的情况(以前安卓开发多火,大家一窝蜂涌入,现在慢慢饱和了,大家就归于理性了吧?)
目前就我来看,首先,一方面虽然想学数据方面的人好像特别特别多,但是实际上能坚持下来,并且真的学好的人并不多(高校这个专业一年培养不了多少人,大部分还是在自我摸索和学习),你作为这方面的博士,你的专业性肯定会遥遥领先绝大多数人的。
其次,数据挖掘目前并没有很多人感官的那么神,它目前还存在很多的欠缺与不足,从这方面说,我觉得数据挖掘目前还仅仅只是刚过了一个婴儿期不久,它正在走向青壮年的路上,但毫无疑问这需要一个过程。为什么这么说呢,因为数据科学现在不管是从算法建模还是实际应用都还需要进一步的成长,特别是实际应用方面,未来,数据科学肯定会进一步落地,真的跟各行各业去结合,去驱动各行各业的发展。这些难道在你博士期间就都能做完吗?反正我是不信!
所以个人建议,总体来看,你不用担心这个行业会马上过气,好好发挥你自己的优势,把理论基础打扎实,后面跟具体的业务去结合应用,你的竞争力绝对很高的!
E. 数据采集和数据挖掘一样吗有什么区别
数据采集和数据挖掘是数据管理的不同阶段
数据采集的工作是从数据源获得能够保存至数据库或数据仓库中的数据信息。例如从传感器采集到的温度、速度、湿度等信息,从网络中采集的Web数据等。
在数据采集之后需要对数据进行数据清洗,使数据符合入库的要求,之后就是对采集的数据进行导入。最后是在数据库或数据仓库上进行数据挖掘。