A. 什么是lvq神经网络

学习向量量化LVQ(Learning Vector Quantization)神经网络,属于前向神经网络类型,在模式识别和优化领域有着广泛的的应用。内
LVQ神经网络由三层组成,容即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

B. 哪些神经网络可以用在图像特征提取上

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。

1.BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。它保证了向局部极小的收敛,但收敛到错误的局部极小值(local minimum),而非全局极小(global minimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。
3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

C. LVQ和BP神经网络有什么区别

你去看下好像 bp是多层前馈神经网络,而lvq和距离计算有关,两者原理有点不一样。虽然都能用,但结果可能有出入。所以具体问题具体算法就好了。

D. 怎么将LVQ神经网络的lvq1和lvq2两种算法结合起来用哪位可以解答一下啊。

lvq2算法先要执行lvq1算法,然后再执行lvq2主体部分算法。
那么你就把lvq1算法训练好的两个权值矩阵(输入-竞争 的权值,竞争-输出 的01连接权值)
传递给lvq2进行进一步训练即可。

E. 神经网络算法原理

一共有四种算法及原理,如下所示:

1、自适应谐振理论(ART)网络

自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。

2、学习矢量量化(LVQ)网络

学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。

3、Kohonen网络

Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。

4、Hopfield网络

Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。

(5)lvq网络扩展阅读:

人工神经网络算法的历史背景:

该算法系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。