A. 请问二代身份证哪些信息是加密的,连表面的身份证号和姓名性别及其他文字都加密吗,真懂得专业的进

身份证号码、姓名、户籍地址本身都是没有加密信息的。

不过,二代身份证内涵芯片,这个是有加密信息的,但是是一个发射类的终端,用于连接公安内部网,验证信息所用,我们是不可见的。

&补充下二代身份证号的组成信息:

前6位为行政区划分代码
第7位至14位为出生日期码
第15位至17位为顺序码
第18位为校验码。
第18位号码是校验码,目的在于检测身份证号码的正确性,是由计算机随机产生的。
第17位号码决定性别。

B. 电信机主姓名能加密吗

电信机主姓名不能加密。
不过电信对于机主信息是进行保护的,一般来说不允许其他人查询号码对应的机主信息的。

C. RSA是什么意思

RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。

RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;

补充回答:
对明文进行加密,有两种情况需要这样作:
1、您向朋友传送加密数据,您希望只有您的朋友可以解密,这样的话,您需要首先获取您朋友的密钥对中公开的那一个密钥,e及n。然后用这个密钥进行加密,这样密文只有您的朋友可以解密,因为对应的私钥只有您朋友拥有。
2、您向朋友传送一段数据附加您的数字签名,您需要对您的数据进行MD5之类的运算以取得数据的"指纹",再对"指纹"进行加密,加密将使用您自己的密钥对中的不公开的私钥。您的朋友收到数据后,用同样的运算获得数据指纹,再用您的公钥对加密指纹进行解密,比较解密结果与他自己计算出来的指纹是否一致,即可确定数据是否的确是您发送的、以及在传输过程中是否被篡改。

密钥的获得,通常由某个机构颁发(如CA中心),当然也可以由您自己创建密钥,但这样作,您的密钥并不具有权威性。

计算方面,按公式计算就行了,如果您的加密强度为1024位,则结果会在有效数据前面补0以补齐不足的位数。补入的0并不影响解密运算。

D. rsa加密和解密的理论依据是什么

以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..
学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。
必备数学知识
RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。
素数
素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。
互质数
网络上的解释是:公因数只有1的两个数,叫做互质数。;维基网络上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。
常见的互质数判断方法主要有以下几种:
两个不同的质数一定是互质数。例如,2与7、13与19。
一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
相邻的两个自然数是互质数。如 15与 16。
相邻的两个奇数是互质数。如 49与 51。
较大数是质数的两个数是互质数。如97与88。
小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
2和任何奇数是互质数。例如2和87。
1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
辗转相除法。
指数运算
指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。
模运算
模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。
RSA加密算法
RSA加密算法简史
RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
公钥与密钥的产生
假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:
随意选择两个大的质数p和q,p不等于q,计算N=pq。
根据欧拉函数,求得r = (p-1)(q-1)
选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
将 p 和 q 的记录销毁。
(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
加密消息
假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:

ne ≡ c (mod N)
计算c并不复杂。Bob算出c后就可以将它传递给Alice。
解密消息
Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:
cd ≡ n (mod N)
得到n后,她可以将原来的信息m重新复原。
解码的原理是:
cd ≡ n e·d(mod N)
以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为p和q是质数)
n e·d ≡ n (mod p) 和 n e·d ≡ n (mod q)
这说明(因为p和q是不同的质数,所以p和q互质)
n e·d ≡ n (mod pq)
签名消息
RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

RSA加密算法的安全性

当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。
1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)
另外,假如N的长度小于或等于256位,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。
RSA加密算法的缺点

虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:
产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;
分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,。