A. python网络编程可以用来做什么

1. Web开发
最火的Python web框架Django,支持异步高并发的Tornado框架,短小精悍的flask,bottle,Django官方的标语把定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)
2. 网络编程
支持高并发的Twisted网络框架,py3引入的asyncio使异步编程变的非常简单
3. 爬虫开发
爬虫领域,Python几乎是霸主地位,Scrapy/Request/BeautifuSoap/urllib等,想爬啥就爬啥
4. 云计算开发
目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算市场近几年的爆发
5. 人工智能
MASA和Google早期大量使用Python,为什么Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,由其PyTorch之后,Python作为AI时代头牌语言的位置基本确立!
6. 自动化运维
问问中国的每个运维人员,运维人员必须会的语言是什么?10个人详细会给你一个相同的答案,它的名字叫Python
7. 金融分析
金融公司使用的很多分析程序、高频交易软件就是用的Python,目前,Python是金融分析、量化交易领域里用的最多的语言
8. 科学运算
97年开始,NASA就在大量使用Python在进行各种复杂的科学运算,随着NumPy,SciPy,Matplotlib,Enthought librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛
9. 游戏开发
在网络游戏开发中Python也有很多应用。相比Lua or C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与Lua相比,Python更适合作为一种Host语言,即程序的入口点是在Python那一端会比较好,然后用C/C++在非常必要的时候写一些扩展。Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
虽然大家很少使用桌面软件了,但是Python在图形界面开发上也很强大,你可以用tkinter/PyQT框架开发各种桌面软件!

B. 有哪些 Python 经典书籍

【Python从入门到精通经典书籍推荐】


  • Python入门
    目的:了解Python,学会用Python编程。
    Python入门书众多,没必要全部阅读,根据介绍挑选合适自己的。PS:排名不分先后。



《Python编程入门:从入门到实践》
【同时使用Python 2.X和3.X讲解】

Amazon编程入门类榜首图书,最值得关注的Python入门书

从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程,开发实际项目

这本书分两部分:
第一部分介绍用Python编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。




《Python基础教程(第2版·修订版)》
【Python 2.5讲解,Python 3上也能运行】


各大网店最畅销的Python入门书

全书分为三部分。
第一部分讲述Python语法,没有废话,还掺入了一些Python 3.0要注意的细节。
第二部分介绍了常用的GUI、框架等应用,点到即止,算是为第三部分做铺垫了,从数目众多的应用中可以了解到Python的强大。
第三部分是Project,全书最大的亮点,大家肯定喜欢。
作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发。



《Python语言及其应用》
【Python 3.X】

语言风格轻松诙谐,讲解多种Python工具和第三方库

实例涉及商业、科研以及艺术领域使用Python开发各种应用

亚马逊最受欢迎的Python编程书之一,评分4.5

书中首先介绍了Python的基础知识,然后逐渐深入多种主题,结合教程和攻略式风格来讲解Python 3中的概念。每章结尾的练习可以帮助你巩固所学的知识。
本书会为你学习Python打下坚实的基础,包括测试、调试、代码复用的最佳实践以及其他开发技巧。


《Python编程入门(第3版)》
【Python 3.X 】

从算术运算、字符串、变量,到函数、数据结构、输入输出和异常处理,应有尽有


《父与子的编程之旅:与小卡特一起学Python》
【Python 2.X 】

原版Amazon 最受欢迎的青少年编程图书

最简单易学的内容组织方式,老少皆宜

第一版获Jolt大奖

本书中,Warren和Carter父子以亲切的笔调、通俗的语言,透彻全面地介绍了计算机编程世界。
他们以简单易学的Python语言为例,通过可爱的漫画、有趣的例子,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等编程的基本概念。
只要懂得计算机的基本操作,如启动程序、保存文件,任何人都可以跟随本书,由简入难,学会编写程序,甚至制作游戏。
本书内容经过教育专家的评审,经过孩子的亲身检验,并得到了家长的认可。

《编程导论》
【Python 2.7】

以麻省理工学院开放式课程(OpenCourseWare)中最受欢迎的计算机科学课程为基础,旨在培养读者的编程思维,使读者拥有计算机科学家的视野

本书涵盖了Python的大部分特性,重点介绍如何使用Python这门语言,共包含编程基础、Python程序设计语言、理解计算的关键概念、计算问题的解决技术等四个方面。
本书将Python语言特性和编程方法贯穿全书,目的是帮助读者在学习Python的同时掌握如何使用计算来解决有趣的问题。


  • Python进阶
    需要一定Python基础。


《流畅的Python》
【兼顾Python 3和Python 2】

PSF研究员、知名PyCon演讲者心血之作

Python核心开发人员担纲技术审校

全面深入,对Python语言关键特性剖析到位

大量详尽代码示例,并附有主题相关高质量参考文献和视频链接

本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。

《Python项目开发实战(第2版)》
【Python 2.7】

网罗Python项目开发中的流程,让你的编程事半功倍

Python项目与封装/团队开发环境/问题驱动开发/源码管理(Mercurial) Jenkins持续集成(CI)/环境搭建与部署的自动化(Ansible)/Django框架……

这是一本偏工程的图书,没怎么讲Python语言基础知识,直接告诉你怎么搭建开发环境,做好代码管理和文档管理以及缺陷管理等工作。


《Python网络编程攻略》
【Python 2.7】

可作为任何一门网络编程课程中培养实践技能的补充材料

需要读者对Python语言及TCP/IP等基本的网络概念有了解,但即使不精通也能通过本书理解相关概念

本书全面介绍了Python网络编程涉及的重要问题,包括网络编程、系统和网络管理、网络监控以及Web应用开发。作者通过70多篇攻略,清晰简明地描述了各种网络任务和问题,提出了可用于多种场景的解决方案,并细致地分析了整个操作过程。


《Python网络编程(第3版)》
【Python 3.X】

涵盖网络编程所有经典话题,提供大量代码清单及示例

从应用开发角度介绍网络编程基本概念、模块以及第三方库

本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。
具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。


《Python性能分析与优化》
【Python 2.X】

全面掌握Python代码性能分析和优化方法

消除性能瓶颈,迅速改善程序性能

本书首先介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中进行性能分析实践能够取得的效果。
紧接着介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。
然后介绍一系列性能优化技术,最后一章会介绍一个具有实际意义的优化案例。


《精通Python设计模式》
【Python 3.X】

用现实例子展示各模式的关键特性

16种基本设计模式,轻松解决软件设计常见问题

本书分三部分,共16章介绍一些常用的设计模式。
第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;
第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;
第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。


《Flask Web开发:基于Python的Web应用开发实战》
【Python 2.7和3.3】

从安装与环境设置讲起,一步一步搭建服务器端Web应用

全流程讲解Web应用开发,给出最佳实践

本书共分三部分,全面介绍如何基于Python微框架Flask进行Web开发。
第一部分是Flask简介,介绍使用Flask框架及扩展开发Web程序的必备基础知识。
第二部分则给出一个实例,真正带领大家一步步开发完整的博客和社交应用Flasky,从而将前述知识融会贯通,付诸实践。
第三部分介绍了发布应用之前必须考虑的事项,如单元测试策略、性能分析技术、Flask程序的部署方式等。


《Python Web开发:测试驱动方法》
【(Django、Selenium)相关部分使用Python 3.3讲解】

亚马逊4.8星评好书

实战式TDD开发指南,使用Django等流行框架开发现代Web应用!

学习Django、Selenium、Git、jQuery和Mock,以及其他当前流行Web开发技术

“这本书很棒、很有趣,所讲的全都是重点知识。如果有人想用Python做测试、学习Django或者想使用Selenium,我极力推荐这本书。要使开发者保持头脑清醒,测试可谓至关重要。Harry完成了一项不可思议的工作,他不仅吸引了我们对测试的关注,而且还探索了切实可行的测试实践方案。”

——Michael Foord,Python核心开发者,unittest维护者



  • Python应用
    用Python数据分析,数据处理,机器学习等等。

《数据科学入门》
【Python 2.7】

Google数据科学家、软件工程师Joel Grus作品

用Python从零开始讲解数据科学的重量级读本

数据科学、机器学习、模式识别领域必备

本书从零开始讲解数据科学。
具体内容包括Python简介,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法等。
作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,通过讲解基础数据科学工具和算法实现,带你快速跨入数据科学大门。
书中含大量数据科学领域的库、框架、模块和工具包。


《机器学习实战》
【Python 2.7】

最畅销机器学习图书

介绍并实现机器学习的主流算法

面向日常任务的高效实战内容

全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。


《机器学习系统设计》
【Python 2.7及以上】

微软Bing核心团队成员推出

聚焦算法编写和编程方式

结合大量实例学会解决实际问题

本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。


《Python数据处理》
【Python 2.7】

将数据处理过程自动化!

全面掌握用Python进行爬虫抓取以及数据清洗与分析的方法,轻松实现高效数据处理!

本书采用基于项目的方法,介绍用Python完成数据获取、数据清洗、数据探索、数据呈现、数据规模化和自动化的过程。
主要内容包括:Python基础知识,如何从CSV、Excel、XML、JSON和PDF文件中提取数据,如何获取与存储数据,各种数据清洗与分析技术,数据可视化方法,如何从网站和API中提取数据。


《Python数据分析基础教程:NumPy学习指南(第2版)》
【Python 2.7】

NumPy中文入门教程,Python数据分析首选

从最基础的知识讲起,手把手带你进入大数据挖掘领域

囊括大量具有启发性与实用价值的实战案例

本书从NumPy安装讲起,逐渐过渡到数组对象、常用函数、矩阵运算、线性代数、金融函数、窗函数、质量控制等内容,致力于向初中级Python编程人员全面讲述NumPy及其使用。
另外,通过书中丰富的示例,你还将学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效。


《Python数据挖掘入门与实践》
【Python 3.4】

全面释放Python的数据分析能力

掌握大数据时代核心技术,轻松入门数据挖掘技术并将其应用于实际项目

本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的最佳实践!


《Python科学计算基础教程》
【Python 2.7及以上】

精彩案例展示Numpy等科学计算模块的强大功能和广泛应用

剖析Python关于并行与大数据计算的方法

总结科学计算的任务、难点以及最佳实践经验

本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。
其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。


《Python数据分析实战》
【Python 2.X】

了解Python在信息处理、管理和检索方面的强大功能

学会如何利用Python及其衍生工具处理、分析数据

三个真实Python数据分析案例,将理论付诸实践

《Python数据分析实战》展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。


《Python网络数据采集》
【Python 3.X】

原书4.6星好评,一本书搞定数据采集

涵盖数据抓取、数据挖掘和数据分析

提供详细代码示例,快速解决实际问题

本书介绍网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。


《Python计算机视觉编程》
【Python 2.6及以上】

亚马逊计算机视觉类图书No.1

详细剖析多种计算机视觉工具

大量示例极易上手

本书是计算机视觉编程的权威实践指南,通过Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、3D重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。