加密解密算法实现
『壹』 rsa加密解密算法
1978年就出现了这种算法,它是第一个既能用于数据加密
也能用于数字签名的算法。它易于理解和操作,也很流行。算
法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和
Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数
( 大于 100个十进制位)的函数。据猜测,从一个密钥和密文
推断出明文的难度等同于分解两个大素数的积。
密钥对的产生:选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 )
互质。最后,利用Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和
n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任
何人知道。 加密信息 m(二进制表示)时,首先把m分成等长数据
块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。对
应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先
作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理
论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在
一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,
RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显
然的攻击方法。现在,人们已能分解140多个十进制位的大素数。因此,
模数n必须选大一些,因具体适用情况而定。
RSA的速度:
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论
是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据
加密。
RSA的选择密文攻击:
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装
(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信
息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保
留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征
--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有
两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体
任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不
对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction
对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不
同类型的攻击方法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险
的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互
质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥
为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数
的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它
成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享
模数n。
RSA的小指数攻击。 有一种提高
RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度
有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各
种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难
度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性
能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;
且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。
目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长
的密钥,其他实体使用1024比特的密钥。
『贰』 C++实现RSA加密解密算法
你的程序直接运行结束了,所以你什么都看不见。
你可以在你的MAIN函数最后一行回加一句:
getchar();
或者
system("pause");
另外如果答你输出的内容是非可见字符,那你也看不见,你下个断点,看看变量的值就看见了。
『叁』 des算法加密解密的实现
一.加密
DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:
DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:
IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:
f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。
R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:
对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:
E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31
膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:
P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:
在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。(S表如图所示)
至此,DES算法加密原理讲完了。在VC++6.0下的程序源代码为:
for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串输入,经过IP置换。
下面进行迭代。由于各次迭代的方法相同只是输入输出不同,因此只给出其中一次。以第八次为例://进行第八次迭代。首先进行S盒的运算,输入32位比特串。
for(i=1;i<=48;i++)//经过E变换扩充,由32位变为48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//与K8按位作不进位加法运算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8组
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面经过S盒,得到8个数。S1,s2,s3,s4,s5,s6,s7,s8分别为S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8个数变换输出二进制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//经过P变换
frk[i]=f[P[i-1]];//S盒运算完成
for(i=1;i<33;i++)//左右交换
L8[i]=R7[i];
for(i=1;i<33;i++)//R8为L7与f(R,K)进行不进位二进制加法运算结果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}
[ 原创文档 本文适合中级读者 已阅读21783次 ] 文档 代码 工具
DES算法及其在VC++6.0下的实现(下)
作者:航天医学工程研究所四室 朱彦军
在《DES算法及其在VC++6.0下的实现(上)》中主要介绍了DES算法的基本原理,下面让我们继续:
二.子密钥的生成
64比特的密钥生成16个48比特的子密钥。其生成过程见图:
子密钥生成过程具体解释如下:
64比特的密钥K,经过PC-1后,生成56比特的串。其下标如表所示:
PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
该比特串分为长度相等的比特串C0和D0。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:
PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2……依次类推直至生成子密钥K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:
迭代顺序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
生成子密钥的VC程序源代码如下:
for(i=1;i<57;i++)//输入64位K,经过PC-1变为56位 k0[i]=k[PC_1[i-1]];
56位的K0,均分为28位的C0,D0。C0,D0生成K1和C1,D1。以下几次迭代方法相同,仅以生成K8为例。 for(i=1;i<27;i++)//循环左移两位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密钥k8
注意:生成的子密钥不同,所需循环左移的位数也不同。源程序中以生成子密钥 K8为例,所以循环左移了两位。但在编程中,生成不同的子密钥应以Lsi表为准。
三.解密
DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:
加密后的结果
L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:
得 L=R0, R=L0。
其程序源代码与加密相同。在此就不重写。
四.示例
例如:已知明文m=learning, 密钥 k=computer。
明文m的ASCII二进制表示:
m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111
密钥k的ASCII二进制表示:
k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
明文m经过IP置换后,得:
11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000
等分为左右两段:
L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000
经过16次迭代后,所得结果为:
L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=
其中,f函数的结果为:
f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=
16个子密钥为:
K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=
S盒中,16次运算时,每次的8 个结果为:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;
子密钥生成过程中,生成的数值为:
C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000