Ⅰ 细胞信号转导

http://www.bioon.com/figure/200407/55899.html
目前,已经发现哺乳动物肠道组织细胞内至少存在4种MAPKs,分别为细胞外信号调节激酶(ERK1/ERK2,也称为p44/42 MAPK)、cJun氨基末端激酶(JNK1/JNK 2)、p38 MAP K(α、β)和ERK5/BMK1。它们各自被特定上游激酶所激活,MAPK信号传导通路由按顺序激活的3类酶蛋白成员组成,即MAPK激酶的激酶 (MAPKKK或MEKK) → MAPK激酶(MAPKK,MEK或MKK)→ MAPK。MAPKs可被特定的MEK在苏氨酸/酪氨酸双位点上磷酸化激活,MEK又可被特定的MEKK 在苏氨酸/丝氨酸双位点磷酸化激活。每一种ME K 可被至少一种MEKK所激活,每一种MAPK又可被不同的MEK激活,构成了MAPK复杂的调节网络。MAPKs被激活后可停留在胞质中,激活一系列其它蛋白激酶,使细胞骨架成分磷酸化,亦可经核转位进入细胞核激活各自的核内转录因子如Elk1、 cJ un、 cfos、 ATP2、 MEF等,再调节转录因子的靶基因如即刻早期基因、后期效应基因和热休克蛋白基因的表达,促进有关蛋白质的合成和通道改变,完成对细胞外刺激的反应。最具代表性的MAPKs通路如下:①ERK(extracellular signalregula ted kinases)信号通路:该传导途径被受体酪氨酸激酶、G蛋白耦联受体和部分细胞因子受体激活。②JNK/SAPK信号通路:该信号通路全称为cJun氨基末端激酶(cJ unNterminal kinase, JNK) /应激活化蛋白激酶 (stress activated protein ki nase, SAPK) 信号传导途径,可被应激怀刺激 (如紫外线、热休克、高渗刺激及蛋白合成抑制剂等)、表皮生长因子(EGF)炎性细胞因子(TNFα、IL1)及某些G蛋白的耦联受体所激活。③p38 MAPK信号通路:性质与JNK相似,同属于应激活化蛋白激酶。促炎因子(TNFα、IL1)、应激刺激(紫外线、H2O2、热休克、高渗、蛋白合成抑制剂等)可以激活p38。此外,p38也被脂多糖和G+细菌细胞壁成分激活

Ⅱ 什么是MAPK

MAPK
细胞最基本的生命活动是细胞的生长、分化与分裂。细胞分裂周期可分为DNA 及蛋白质合成作准备的G1 期、DNA 合成的S 期、为有丝分裂作准备的G2 期与有丝分裂的M 期以及细胞呈相对稳定状态的G0 期。生物信息通过一系列复杂的信号传递过程来诱导相关基因的表达、调控细胞分裂,决定细胞的转归。衰老细胞的细胞周期常阻滞于G1/ S 期或G2/M期,尤其是G1 末期的限制性调控点“R”点的阻滞。

促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAP激酶,MAPK)链是真核生物信号传递网络中的重要途径之一,在基因表达调控和细胞质功能活动中发挥关键作用。MAPK链由3类蛋白激酶MAP3K-MAP2K-MAPK组成,通过依次磷酸化将上游信号传递至下游应答分子.

MAPK信号通路包括:MAP激酶(MAPK)、MAPK激酶(MEK、MKK或MAPK 激酶)和MEK激酶(MEKK、MKKK或MAPK激酶)。在哺乳动物机体中,已经发现五种不同的MAPK信号转导通路。其中ERK1/2信号转导通路调控细胞生长和分化,JNK和p38 MAPK信号转导通路在炎症与细胞凋亡等应激反应中发挥重要作用。使用这一芯片试剂盒检测RNA实验标本,操作者通过杂交反应技术,即可研究实验系统中与MAPK信号通路相关基因表达水平改变。

MAPK属于一种Ser/Thr蛋白激酶,可在多种不同的信号转导途径中充当一种共同的信号转导成份,且在细胞周期调控中发挥重要的作用。目前MAPK家族中到少有4个成员已被纯化和深入 研究。如p42mapk,p44erk1,p54MAPK及p44mpk。

MAPK可促进血管内皮细胞增殖和新血管生成。新血管生成后可为肿瘤提供更多的营养,加速肿瘤的生长,促进癌细胞的扩散。

Ⅲ Ras-Raf-MAPKK-MAPK信号转导通路

是RPTK介导的细胞信号转导,信号的级联放大过程。
受体酪氨酸激酶(receptor tyrosine kinases,RTKs)
包括6个亚族
信号转导:配体→受体→受体二聚化→受体的自磷酸化→
激活RTK→胞内信号蛋白→启动信号传导
 RTK- Ras信号通路:
配体→活化酪氨酸激酶RTK→活化的酪氨酸激酶RTK 结合接头蛋白adaptor → GRF(鸟苷酸释放因子)促进GDP释放→Ras(GTP结合蛋白)活化,诱导下游事件:Raf丝氨酸/苏氨酸蛋白激酶(又称MAPKKK)活化(使蛋白上的丝氨酸/苏氨酸残基磷酸化)→活化的Raf 结合并磷酸化另一种蛋白激酶MAPKK,导致MAPKK 活化(MAPKK是一种具双重特异的蛋白激酶,它能磷酸化MAPK的苏氨酸和酪氨酸残基使之激活)→MAPK活化→进入细胞核→其它激酶或基因调控蛋白(转录因子)的磷酸化修饰。

G蛋白偶联受体介导的MAPK的激活
MAPK(Mitogen-activated protein kinase)又称ERK(extracelular signal-regulated kinase)----真核细胞广泛存在的Ser/Thr蛋白激酶。
 MAPK的底物:膜蛋白(受体、酶)、胞浆蛋白、核骨架蛋白、及多种核内或胞浆内的转录调控因子----在细胞增殖和分化中具有重要调控作用。
 PTX敏感性G蛋白(Gi,Go)的亚基依赖于Ras激活MAPK,具体机制还有待深入研究;
 PKC、PLC与G蛋白偶联受体介导的MAPK激活
PKC和PLC 参与G蛋白偶联受体激活MAPK :
 G蛋白偶联受体激活G蛋白; G蛋白亚基或 亚基激活PLC,促进膜磷脂代谢; 磷脂代谢产物( DAG + IP3 )激活PKC; PKC 通过Ras 或 Raf 激活MAPK ;
由于PKC对钙的依赖性不同,所以G蛋白偶联受体– MAPK途径对钙要 求不同;
 PKA对G蛋白偶联受体– MAPK途径的负调控
迄今未发现和制备出MAPK组成型突变(dominant negative mutant),提示细胞难于忍受MAPK的持续激活(MAPK的去活是细胞维持正常生长代谢所必须)。主要机制:特异性的Tyr/Thr磷脂酶可选择性地使MAPK去磷酸化,关闭MAPK信号。
 cAMP , MAPK ;cAMP直接激活cAMP依赖的PKA;PKA可能通过RTK或通过抑制Raf-Ras相互作用起负调控作

RTKs的失敏:
催化性受体的效应器位于受体本身,因此失敏即酶活性速发抑制。

机制:受体的磷酸化修饰。EGF受体Thr654的磷酸化导致RTK活性的
抑制,如果该位点产生Ala突变,则阻止活性抑制,后又发现C
端的Ser1046/7也是磷酸化位点。磷酸化位点所在的C端恰好是
SH2蛋白的结合部位。

引起受体磷酸化的激酶:
PKC----作用于Thr654;
CaMK2(Ca2+和CaM依赖的激酶2)----作用于Ser1046/7
还发现:EGF受体是CDK的靶蛋白,提示和周期调控有关。

 RTK晶体结构研究表明, RTK激活后形成稳定的非抑制性构象;磷酸化修饰后,形成抑制性构象,引起失敏。

 RTK失敏对细胞正常功能所必须, RTK 的持续激活将导致细胞生长失控。

Ⅳ 最近实验要做MAPK靶点的信号通路,哪位大神给介绍下相关抑制剂啊

关于MAPK:

丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一组能被不同的细胞外刺激,如细胞因子、神经递质、激素、细胞应激及细胞黏附等激活的丝氨酸-苏氨酸蛋白激酶。由于MAPK是培养细胞在收到生长因子等丝裂原刺激时被激活而被鉴定的,因而得名。所有的真核细胞都能表达MAPK。MAPK通路的基本组成是一种从酵母到人类都保守的三级激酶模式,包括MAPK激酶激酶(MAP kinasekinase kinase,MKKK)、MAPK激酶(MAP kinase kinase,MKK)和MAPK,这三种激酶能依次激活,共同调节着细胞的生长、分化、对环境的应激适应、炎症反应等多种重要的细胞生理/病理过程。


信号通路图:


相关抑制剂:

Selumetinib(AZD6244)是一种有效,高选择性的MEK1抑制剂,IC50为14 nM,也抑制ERK1/2磷酸化,IC50为10 nM,对p38α, MKK6, EGFR, ErbB2, ERK2, B-Raf等没有抑制作用。Phase 3。

Vemurafenib(PLX4032, RG7204)是一种新型有效的B-RafV600E抑制剂,IC50为31 nM。

SB203580是一种p38 MAPK抑制剂,IC50为0.3-0.5 μM,与SAPK3(106T)和SAPK4(106T)相比选择性低10倍,且抑制PKB磷酸化,IC50为3-5 μM。

参考:www.selleck.cn/pharmacological_MAPK.html