故障树的功能
A. 故障树割集怎么算
于故障树分析法的结构函数定义如下: 设故障树(FT)中有n个底事件 ,C ∈ 为某些底事件的集合,当其中全部底事件都发生时,顶事件必然发生,则称C为故障树的1个割集。
若C是1个割集,且任意去掉其中1个底事件后就不再是割集,则称C为最小割集。若FT 有k个最小割集,只要有1个最小割集 ( j =1,2,…k )中的全部底事件X 均发生,故障必定发生。
k个最小割集中,只要有一个发生,顶事件就发生。
(1)故障树的功能扩展阅读:
故障树分析可以用于:
1、了解最上方事件和下方不希望出现状态之间的关系。
2、显示系统对于系统安全/可靠度规范的符合程度。
3、针对造成最上方事件的各原因列出优先次序:针对不同重要性的量测方式建立关键设备/零件/事件的列表。
4、监控及控制复杂系统的安全性能(例如:特定某飞机在油料阀x异常动作时是否可以安全飞行?此情形下飞机可以飞行多久)。
5、最小化及最佳化资源需求。
6、协助设计系统,故障树分析可以作为设计工具,创建输出或较低层模组的需求。
B. 汽车故障诊断里面故障树法是什么意思
故障树是描抄述对象结构、功能袭和关系的一种定性的因果关系,它体现了故障传播的层次性和子节点(即下层故障源)与父节点(即上层故障现象)之间的因果关系。故障树分析法(FTA)是一种自上而下逐层展开的图形演绎分析法,其定性分析的主要目的在于找出导致顶事件发生的所有可能的故障模式,即寻找故障树的全部最小割集。通过最小割集断系可判断系统最薄弱环节,指明故障源及故障原因,提供改进方案和维修建议。
C. “SPC”、“DOE”、“FMEA”是指什么该怎样应用
SPC就是利用统计技术对过程中的各个阶段进行监控,发现过程异常,及时告警,从而达到保证产品质量的目的。这里的统计技术泛指任何可以应用的数理统计方法,而以控制图理论为主。但SPC有其历史局限性,它不能告知此异常是什么因素引起的,发生于何处,即不能进行诊断,而在现场迫切需要解决诊断问题,否则即使要想纠正异常,也无从下手。
DOE:实验设计(DesignofExperiments,缩写为DOE)是研究如何制定适当实验方案以便对实验数据进行有效的统计分析的数学理论与方法。实验设计应遵循三个原则:随机化,局部控制和重复。随机化的目的是实验结果尽量避免受到主客观系统因素的影响而呈现偏倚性;局部控制是化分区组,使区组内部尽可能条件一致;重复是为了降低随机误差的影响,目的仍在于避免可控的系统性因素的影响。实验设计大致可以分为四种类型:析因设计、区组设计、回归设计和均匀设计。析因设计又分为全面实施法和部分实施法。析因实验设计方法就是我们常说的正交实验设计。
FMEA:TS16949的5大手册--FMEA是一种可靠性设计的重要方法
FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。
故障模式、影响、分析模块
其核心部分是对特定系统进行分析研究,确定怎样修改系统以提高整体可靠性,避免失效。为了准确计算失效的危害性,在分析时,提供了系统化的处理过程,自动编制FMEA任务,包括确定所有可能失效的零部件及其失效模式,确定每一种失效模式的局部影响、下一级别的影响以及对系统的最终影响,确定失效引起的危害性,确定致命失效模式以消除或减少发生的可能性或剧烈程度。
FMEA可完成以下功能:
失效模式、影响分析(FMEA)
危害性分析(CriticallyAnalysis)
功能FMEA(FunctionalFMEA)
破坏模式和影响分析(DMEA)
FMEA具有以下特点:
丰富的故障模式数据库
完善的企业FMEA规范定制功能
自动由FMEA生成原始的FTA(故障树)
故障树分析(FaultTreeAnalysis)模块
利用FTA模块,在系统设计过程当中,通过对造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合方式及其发生概率以计算系统故障概率,采取相应的纠正措施,以提供系统可靠性的一种分析方法。它以图形的方式表明了系统中失效事件和其它事件之间的相互影响,是适用于大型复杂系统安全性与可靠性分析的常用的有效方法。利用FTA,用户可以简单快速地建立故障树,输入有关参数并对系统进行定性分析和定量分析,生成报告,最后打印输出。
事件树分析(EventTreeAnalysis)模块
D. 故障模式发生概率和故障树有必然的联系吗
应用于载人航天任务的北京中心通信系统是一个复杂的大系统,其可靠性影响着每一次航天任务的成败,因此对系统可靠性的分析尤为重要。故障树分析方法是以故障树作为模型对大型复杂系统的可靠性、安全性进行分析和风险评估的一种重要方法,。故障树分析通过对不希望事件发生的原因逐层进行分析,确定导致不希望事件的各种故障组合、故障影响的程度以及不希望事件的发生可能性,从而为评价和改进设计提供依据。本文首先介绍了故障树建模技术,然后运用该技术对航天测控系统中的应急通信网络系统进行了可靠性分析。
2 基本概念
1)故障(Fault GJB451):
产品或产品的一部分不能或将不能完成预定功能的事件或状态。
2)故障原因(Failure Cause):
故障发生的根原因,直接导致故障或引起性能降低进一步发展为故障的那些物理或化学过程、设计缺陷、工艺缺陷、零件使用不当或其它过程,是制定预防和纠正措施的重要依据,对故障原因关注得越多,消除故障的成功率就越高。
3)故障模式(Failure Mode):
故障的表现形式。
4)故障影响(Failure Effect):
故障对系统、设计、过程或服务所产生的输出结果,故障影响一般分为局部的、高一层次的和最终影响三级。
5)故障率(Failure Rate):
在规定的时间间隔内,故障发生的比率。
6)严酷度 (Severity):
故障模式所产生后果的严重程度。
7)故障检测方法(Failure Checkout Method):