信号的频域分析
发布时间: 2024-01-21 23:30:06
系统频域分析的本质: F(jw)是原本信号各个频率虚指数信号函数(基信号)的加权值,当通过系统的流水线处理时,系统给其各个频率虚指数信号函数(基信号)又进行了加工,即又乘以了一个加权值(也就是想要哪个频率的虚指数信号函数,就将其乘以一个好的数,要是不喜欢就乘以0,或者稍微大点),这样输出结果,即系统响应的就是各个频率的虚指数信号函数的加权信号的叠加。而把这个加权值得叠加抽离出来,就是输出信号的频谱,即Y(jw)=F(jw)H(jw).
『贰』 为什么要对信号进行频谱分析
对信号进行频谱分析的原因:
在看似杂乱无章的信号中,找出一定振幅、相位、频率的基本的正弦(余弦)信号中,振幅较大(能量较高)信号对应的频率,从而找出信号的主要振动频率特点。如减速机故障时,通过频谱分析,根据各级齿轮转速,齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
信号谱分析是数字信号处理的重要内容,对确定的信号其时 域表示是确定的,其频谱可以通 过傅立叶变换得到。但在实际应用中,携带信息的信号本质上都是随机的,随机信号不能用 确定的时间函数表示,只能用概率分布函数、概率密度函数或统计平均特性来描述。通常把 随机信号看作无限长度和无限能量的功率信号,由于不满足绝对可积,其傅立叶变换不存在 ,因此只能研究其功率在频域的分布,即功率谱或功率谱密度。
实际应用中人们所能得到的 随机信号的样本函数总是有限长序列,根据有限长度的信号所得的功率谱只是随机信号真实 功率谱的估计,称为功率谱估计。功率谱是平稳随机信号在频域上,描述各频率分量功率分 布情况的基本特征量,由于功率谱与相关函数之间是一对傅立叶变换,经典功率谱估计都依 据DFT,而采用FFT算法,故称之为非参数方法。