双纽线流量计
Ⅰ 气体流量计的具体参数
根据双纽线原理,出现了增压器、内燃机等专用空气流量计,尤其是HOMKOM空气流量计,双纽线流量计最大的优点有三,一个就是无负载,没有节流阻件,测量更准确;第二,传感器是安装在进风口,法兰或卡箍连接方式,安装方便;第三,此流量计为质量流量计,输出是质量流量值,更直观。 (1)气体涡轮流量计能够检测介质的温度与压力,井随之进行自动补偿和压缩因子自动修正。它还可直接检测气体的标准体积或饱和蒸汽的质量流量。
(2)气体涡轮流量计采用先进的微机技术与高性能的集成芯片,利用先进的微功耗高新技术,整机功耗低。该流量计既可凭内电池长期供电运行,又可由外电源供电运行。
(3)流量计采用LCD显示,清晰直观,读数方便。带有脉冲信号输出,也可根据用户需要输出4~20MA的标准模拟信号。
(4)采用RS485接口与上位机联网。每台上位机可带64台流量计,且只须两根通讯线。安装费用低,便于用户集中管理。
因此从油田现场的使用来看,气体涡轮流量计其性能稳定,维护量小。利用旋进旋涡气体流量计所测得的数据,能够及日口分析和研究单元区块的油井产量变化,做到有的放矢的进行管理和施工。 气体涡轮流量计的基本原理当沿着轴向流动的流体进入流量传感器入时,叶片强迫流体进行旋转运动,于是在旋涡蔓生体中心产生旋涡流。旋涡流在文丘利管中旋进,到达收缩段突然节流使旋涡流加速。 当沿着轴向流动的流体进入流量传感器入时。当旋涡流进入扩散段后,因回流的作用强迫进行旋进式二次旋转。此时,旋涡流的旋转频率与介质流速成正比,并为线性。压电传感器检测的微弱电荷信号经前置放大器放大、滤波、整形后变成频率与流速成正比的脉冲信号,最后送积算仪进行计数处理。
流量积算仪由温度和压力检测模拟通道以及微处理单元组成,并配有外输信号接口,输出各种信号。流量计中的微处理器可根据检测到的介质温度值查得介质密度和压力,完成介质的体积流量和质量流量的检测。流量计中的微处理器可按照气态方程进行温压补偿,并自动进行压缩因子修正。 在蒸汽流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡,旋涡列在旋涡发生体下游非对称地排列。气体涡轮流量计便是依据卡门旋涡原理进行封闭管道流体流量测量的新型流量计。因其具有良好的介质适应能力,无需温度压力补偿即可直接测量蒸汽、空气、气体、水、液体的工况体积流量,配备温度、压力传感器可测量标况体积流量和质量流量,是节流式流量计的理想替代产品。
为提高气体流量计的耐高温及抗振动性能,我公司新近开发出了气体涡轮流量计芯片Ⅱ级传感器,因其独特的结构和选材使该传感器可在高温(350℃)、强振动(≤1g)的恶劣工况下使用。在实际应用中,往往最大流量远低于仪表的上限值,随着负荷的变化,最小流量又往往会低于仪表的下限值,仪表并非工作在它的最佳工作段,为了解决这一问题,通常采用在测量处缩径提高测量处的流速,并选用较小口径的仪表以利于仪表的测量,但是这种变径方式必须在变径管与仪表间有长度为15D以上的直管段进行整流,使加工、安装都不方便。我公司研制的纵断面形状为圆弧的LGZ变径整流器,具有整流、提高流速及改变流速分布多重作用,其结构尺寸小,仅为工艺管内径的1/3,与涡街流量计作成一体,不仅不需要另外附加一段直管段,还可以降低对工艺管直管段的要求,安装非常方便。为了使用方便,电池供电的就地显示型气体流量计采用微功耗高新技术,采用锂电池供电可不间断运行一年以上,节省了电缆和显示仪表的采购安装费用,可就地显示瞬时流量、累积流量等。温度补偿一体型气体流量计还带有温度传感器,可以直接测量出饱和蒸汽的温度并计算出压力,从而显示饱和蒸汽的质量流量。气体流量计带有温度、压力传感器,用于气体流量测量可直接测量出气体介质的温度和压力,从而显示气体的标况体积流量。
Ⅱ 请问安全仪表系统(SIS)和紧急停车系统(ESD)有什么区别
安全仪表系统(SIS)和紧急停车系统(ESD)区别为:应用不同、功能不同、优点不同。
一、应用不同
1、安全仪表系统(SIS):安全仪表系统(SIS)主要为工厂控制系统中报警和联锁部分,是工厂企业自动控制中的重要组成部分。
2、紧急停车系统(ESD):紧急停车系统(ESD)在石化行业以及大型钢厂及电厂中都有着广泛的应用。
二、功能不同
1、安全仪表系统(SIS):安全仪表系统(SIS)的功能是监测生产过程中出现的或者潜伏的危险,发出告警信息或直接执行预定程序,立即进入操作,防止事故的发生、降低事故带来的危害及其影响。
2、紧急停车系统(ESD):紧急停车系统(ESD)的功能是通过高速运算PLC来实现实时在线监测控制装置的安全性。
三、优点不同
1、安全仪表系统(SIS):安全仪表系统(SIS)优点是覆盖面广、安全性高、有自诊断功能,能够检测并预防潜在的危险。
2、紧急停车系统(ESD):紧急停车系统(ESD)优点是响应速度越快越好。有利于保护设备,避免事故扩大;并有利于分辨事故原因记录。
参考资料来源:
网络——安全仪表系统
网络——esd紧急停车系统
Ⅲ 小浪底工程是失败了么,原因是什么
小浪底水利枢纽工程是黄河治理未来二十年的主要工程措施。洪水期,利用小浪底至花园口区间的中常洪水,加上小浪底及时排洪叠加洪峰,使流量与含沙量相适应,“大水带大沙”,就可能取得最好的输沙减淤效果。小浪底水库借分洪调水之机集中排沙,利用大水排沙入海,延长小浪底水库淤积泥沙的时间,相应增加了水库极为宝贵的库容,研究其科学的调度运行方式,千方百计延长其淤积库容使用年限,更多的利用小浪底有效库容冲沙与防洪,又避免对下游河道淤积。
枯水年份水库或特枯水年份蓄水较少时,可以考虑暂缓调水调沙,水量用于发电与利用,同时水量不充沛调水调沙也很难达到其预期效果。
1997年10月28日,小浪底工程顺利实现大河截流。2000年11月30日,历时6年,大坝主体全部完工,比合同工期提前了13个月。2000年1月9日,首台机组投产。2001年12月31日,工程全部竣工,总工期11年。2009年4月6日至7日,国家发展和改革委员会、水利部在郑州主持召开工程竣工验收会议,通过了小浪底工程竣工验收。
建成后的小浪底工程由拦河大坝、泄洪建筑物和引水发电系统组成,由此成为黄河干流上的一座集减淤、防洪、防凌、供水、灌溉、发电等为一体的大型综合性水利枢纽工程。数据显示,小浪底坝址控制流域面积69.4万平方公里,占黄河流域面积的87.3%;水库总库容126.5亿立方米,长期有效库容51亿立方米;总装机容量为156万千瓦,年平均发电量为51亿千瓦时;每年可增加40亿立方米的供水量。
1999年10月25日,小浪底工程开始下闸蓄水,至今已安全运行10个年头。有效缓解了下游洪水威胁,基本解除了下游凌汛威胁,黄河下游防洪标准由不足60年一遇提高到千年一遇。
自2002年至2009年,黄河先后通过小浪底水库进行了3次调水调沙实验和6次生产运行。9次调水调沙均实现了下游河道主槽的全线冲刷,合计入海沙量为5亿多吨,河道主槽最小过洪能力由2002年以前的1800立方米每秒提高到目前的3880立方米每秒,“二级悬河”形势开始缓解。
此外,在水资源的统一调度下,黄河再没有发生过断流现象。截至2008年底,小浪底工程累计向下游供水1873亿立方米,并多次向青岛、天津、白洋淀供水,有效改善了下游供水条件和生态环境。
不久前,中国建筑业协会联合11家行业建设协会评选出新中国成立60周年百项经典暨精品工程,黄河小浪底水利枢纽工程和长江三峡水利枢纽工程、密云水库等工程一起,荣获新中国成立60周年经典工程