微推荐系统
1. 求国产手机系统流畅排名,有哪些比较推荐
中国手机系统流畅度排名榜是一加、OPPO、vivo、华为、小米、魅族、中兴、努比亚、锤子。我着重推荐的是华为旗下的P30 Pro。
屏幕方面,华为P30pro采用的是,6.5英寸OLED材质水滴全面屏,而屏幕之下还有专门的指纹识别。而在边框和下巴方面,则是变得更窄了,这使得华为P30pro的颜值更高。而这样出色的颜值,会让人感觉到华为P30pro在外观视觉方面是十分优秀的。
P30PRO的日常流畅性完全不输今年的高通855机型,试玩了王者和吃鸡,像这种主流的手游流畅性也很棒,再加上EMUI对于安卓大版本的更新确实很积极,我觉得之前对emui有排斥的用户可以基本放心,因为现在来说基础体验不会有什么严重的翻车情况,更多的则是对云服务和系统设计调性上的偏好。
2. 个性化推荐系统的基本框架
个性化推荐系统的基本框架如下:
参考国内最具代表性的百分点推荐系统框架来讲,个性化推荐系统的推荐引擎在个性化算法的框架基础之上,还引入场景引擎、规则引擎和展示引擎,形成全新的百分点推荐引擎的技术框架,系统通过综合并利用用户的兴趣偏好、属性,商品的属性、内容、分类,以及用户之间的社交关系等等,挖掘用户的喜好和需求,主动向用户推荐其感兴趣或者需要的商品。
基于云计算的个性化推荐平台。消除数据孤岛,建立基于用户全网兴趣偏好轨迹的精准云计算分析模型,打通用户在多个网站的兴趣偏好,形成成用户行为偏好大数据中心。
多种智能算法库。基于多维度的数据挖掘、统计分析,进行算法模型的建立和调优。综合利用基于内容、基于用户行为和基于社交关系网络的多种算法,为用户推荐其喜欢的商品、服务或内容。
电子商务推荐系统的主要算法有:
(1) 基于关联规则的推荐算法(Association Rule-based Recommendation)
(2) 基于内容的推荐算法 (Content-based Recommendation)
内容过滤主要采用自然语言处理、人工智能、概率统计和机器学习等技术进行过滤。
通过相关特征的属性来定义项目或对象,系统基于用户评价对象的特征学习用户的兴趣,依据用户资料与待预测项目的匹配程度进行推荐,努力向客户推荐与其以前喜欢的产品相似的产品。如新闻组过滤系统News Weeder。
基于内容过滤的系统其优点是简单、有效。尤其对于推荐系统常见的冷启动(Cold Start)问题,Content-based方法能够比较好的进行解决。因为该算法不依赖于大量用户的点击日志,只需要使用待推荐对象(item)本身的属性、类目、关键词等特征,因此该方法在待推荐对象数量庞大、变化迅速、积累点击数稀少等应用场景下有较好的效果。但该方法的缺点是对推荐物的描述能力有限,过分细化,推荐结果往往局限与原对象相似的类别中,无法为客户发现新的感兴趣的资源,只能发现和客户已有兴趣相似的资源。这种方法通常被限制在容易分析内容的商品的推荐,而对于一些较难提取出内容的商品,如音乐CD、电影等就不能产生满意的推荐效果。
(3) 协同过滤推荐算法 (Collaborative Filtering Recommendation)
协同过滤是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
与传统文本过滤相比,协同过滤有下列优点:
1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
3)推荐的新颖性。 正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon,CDNow,MovieFinder,都采用了协同过滤的技术来提高服务质量。
协同过滤推荐算法,可进一步细分为基于用户的协同过滤(user-based collaborative filtering)和基于物品的协同过滤(item-based collaborative filtering)。
基于用户的协同过滤的基本思想是:根据所有用户对物品或者信息的偏好,发现与当前用户口味和偏好相似的“邻居”用户群,在一般的应用中是采用计算“K- 邻居”的算法;然后,基于这 K 个邻居的历史偏好信息,为当前用户进行物品的推荐。
基于物品的协同过滤的基本原理也类似,该方法根据用户和物品直接历史点击或购买记录,来计算物品和物品之间的相似度,然后根据用户的历史偏好的物品信息,将挖掘到的类似的物品推荐给用户
基于用户的协同过滤和基于物品的协同过滤各自有其适用场景。总的来看,协同过滤方法的缺点是:
1)稀疏性问题:如果用户对商品的评价非常稀疏,这样基于用户的评价所得到的用户间的相似性可能不准确;
2)可扩展性问题:随着用户和商品的增多,系统的性能会越来越低;
3)冷启动问题:如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐。
4)长尾问题:对微小市场的推荐。
因此,现在的电子商务推荐系统都采用了几种技术相结合的推荐技术。