系统理论的起源发展

系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1932年提出“开放系统理论”,提出了系统论的思想。1937年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才公开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论:基础、发展和应用》(《GeneralSystemTheory;Foundations,Development, Applications》),该书被公认为是这门学科的代表作。贝塔朗菲临终前发表了《一般系统论的历史与现状》一文,探讨系统研究的未来发展。此外,它还与拉维奥莱特(A. Laviolette)合写了《人的系统观》一书。
系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。,贝塔朗菲对此曾作过说明,英语 SystemApproach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach这样一个不太严格的词,正好表明这门学科的性质特点。
随着世界复杂性的发现。在科学研究中兴起了建立复杂性科学的热潮。贝塔朗菲指出,现代技术和社会已变得十分复杂,传统的方法不再适用,“我们被迫在一切知识领域中运用整体或系统概念来处理复杂性问题”。普利高津断言,现代科学在一切方面,一切层次上都遇到复杂性,必须“结束现实世界简单性”这一传统信念,要把复杂性当作复杂性来处理,建立复杂性科学。正是在这种背景下,出现了一系列以探索复杂性为己任的学科,我们可统称为系统科学。系统科学的发展可分为两个阶段:第一阶段以二战前后控制论、信息论和一般系统论等的出现为标志,主要着眼于他组织系统的分析;第二阶段以耗散结构论、协同论、超循环论等为标志,主要着眼于自组织系统的研究。信息学家魏沃尔指出:19世纪及其之前的科学是简单性科学;20世纪前半叶则发展起无组织复杂性的科学,即建立在统计方法上的那些学科;而20世纪后半叶则发展起有组织的复杂性的科学,主要是自组织理论。
我们可以把复杂性方法论原则概括为以下几个方面:
整体性
系统观点的第一个方面的内容就是整体性原理或者说联系原理。从哲学上说,所谓系统观点首先不外表达了这样一个基本思想:世界是关系的集合体,而非实物的集合体。整体性方法论原则就根据于这种思想。
系统科学的一般理论可简单概括如下:所谓系统是指由两个或两个以上的元素(要素)相互作用而形成的整体。所谓相互作用主要指非线性作用,它是系统存在的内在根据,构成系统全部特性的基础。系统中当然存在着线性关系,但不构成系统的质的规定性。系统的首要特性是整体突现性,即系统作为整体具有部分或部分之和所没有的性质,即整体不等于(大于或小于)部分之和,称之为系统质。与此同时,系统组分受到系统整体的约束和限制,其性质被屏蔽,独立性丧失。这种特性可称之为整体突现性原理,也称非加和性原理或非还原性原理。整体突现性来自于系统的非线性作用。系统存在的各种联系方式的总和构成系统的结构。系统结构的直接内容就是系统要素之间的联系方式;进一步来看,任何系统要素本身也同样是一个系统,要素作为系统构成原系统的子系统,子系统又必然为次子系统构成……如此,则…→次子系统→子系统→系统之间构成一种层次递进关系。因而,系统结构另一个方面的重要内容就是系统的层次结构。系统的结构特性可称之为等级层次原理。与一个系统相关联的、系统的构成关系不再起作用的外部存在称为系统的环境。系统相对于环境的变化称为系统的行为,系统相对于环境表现出来的性质称为系统的性能。系统行为所引起的环境变化,称谓系统的功能。系统功能由元素、结构和环境三者共同决定。相对于环境而言,系统是封闭性和开放性的统一。这使系统在与环境不停地进行物质、能量和信息交换中保持自身存在的连续性。系统与环境的相互作用使二者组成一个更大的、更高等级的系统。
整体性原则是系统科学方法论的首要原则。它认为,世界是关系的集合体,根本不存在所谓不可分析的终极单元;关系对于关系物是内在的,而非外在的。因而,近代科学以分析为手段而进行的把关系向始基的线性还原是不能允许的。整体性原则要求,我们必须从非线性作用的普遍性出发,始终立足于整体,通过部分之间、整体与部分之间、系统与环境之间的复杂的相互作用、相互联系的考察达到对象的整体把握。具体来说,第一,从单因素分析进入到多因素分析;第二,模型本身成为认识目的;第三,从功能到结构。
动态性
系统观点的第二个方面的内容就是动态演化原理或过程原理。从哲学上看,这一原理不外是说:世界是过程的集合体,而非既成事物的集合体。动态性原则就依据于这一原理。
系统科学的动态演化原理的基本内容可概括如下:一切实际系统由于其内外部联系复杂的相互作用,总是处于无序与有序、平衡与非平衡的相互转化的运动变化之中的,任何系统都要经历一个系统的发生、系统的维生、系统的消亡的不可逆的演化过程。也就是说,系统存在在本质上是一个动态过程,系统结构不过是动态过程的外部表现。而任一系统作为过程又构成更大过程的一个环节、一个阶段。
与系统变化发展相关的重要概念,除了我们前面已经讨论过的可逆与不可逆、确定性与随机性之外,有序与无序也是刻画系统演化形态特征的重要范畴。热力学、协同学、控制论和信息论分别用熵、序参量和信息量来刻画有序与无序。在数学上,一般以对称破缺来定量刻画。通俗地说,所谓有序是指有规则的联系,无序是指无规则的联系。系统秩序的有序性首先是指结构有序。例如,类似雪花的晶体点阵、贝纳德花样、电子的壳层分布、激光、自激振荡等空间有序,行星绕日旋转等各种周期运动为时间有序。结构无序是指组分的无规则堆积。例如,一盘散沙、满天乱云、垃圾堆等空间无序。原子分子的热运动、分子的布朗运动、混沌等各种随机运动为时间无序。此外系统秩序还包括行为和功能的有序与无序。平衡态与非平衡态则是刻画系统状态的概念。平衡态意味着差异的消除、运动能力的丧失。非平衡意味着分布的不均匀、差异的存在,从而意味着运动变化能力的保持。与此相联系,有序可分为平衡有序与非平衡有序。平衡有序指有序一旦形成,就不再变化,如晶体。它往往是指微观范围内的有序。非平衡有序是指有序结构必须通过与外部环境的物质、能量和信息的交换才能得以维持,并不断随之转化更新。它往往是呈现在宏观范围内的有序。
二十世纪下半叶出现的自组织理论从多方面探讨了有序与无序相互转化的机制和条件、不可逆过程所导致的结果,即进化和退化及其关系问题,着重研究了系统从无序向有序、从低序向高序转化也即进化的可能性和途径问题。
1969年,普利高津提出耗散结构论,这一理论从时间不可逆性出发,采用薛定谔最早提出的“负熵流”概念,使得在不违反热力学第二定律的条件下,得出这样的结论:远平衡开放系统可以通过负熵流来减少总熵,自发地达到一种新的稳定的有序状态,即耗散结构状态。耗散系统形成以远离平衡态的开放系统和系统内非线性机制为条件。非稳定性即涨落是建立在非平衡态基础上的耗散结构稳定性的杠杆。在平衡态没有涨落的发生;在近平衡态的线性非平衡区,涨落只会使系统状态发生暂时的偏离,而这种偏离将不断衰减直至消失;而在远平衡的非线性区,任何一个微小的涨落都会通过相干作用而得到放大,成为宏观的、整体的“巨涨落”,使系统进入不稳定状态,从而又跃迁到新的稳定态。
1976年德国理论物理学家赫尔曼?哈肯出版了《协同学导论》一书,1978年第二版增加了“混沌态”一章,建立了协同学理论的基本框架。协同学以信息论、控制论、突变论为基础,并吸取了耗散结构论的成果,继耗散结构理论之后进一步具体考察了非线性作用如何能够造成系统的自组织。协同学认为,系统从无序向有序转化的关键并不在于系统是否和在多大程度上处于非平衡态,只要是一个由大量子系统构成的系统,在一定条件下,它的子系统之间通过非线性的相互作用就能产生协同和相干效应,从也就能够自发产生宏观的时空结构,形成具有一定功能的自组织结构,表现出新的有序状态。哈肯给出了决定论的动力学方程,并同时引入二分支概念。从而提供了系统由一个质态跃迁到另一质态的说明方法。当系统某个参数在域值范围之外,系统处于稳定平衡位置;当系统参数进入域值范围,系统就成为非稳定的,同时又要形成新的平衡位置。自组织系统形成的两个基本条件是:开放系统和涨落的存在。由稳定平衡到非稳定平衡起作用的是外部条件,由非稳定平衡到新的稳定平衡其作用的是系统涨落。哈肯的理论较好地说明了物理学中的自组织现象,如激光、细胞繁殖等。但用它说明生物和社会系统有一定困难。
1971年德国生物学家爱肯正式提出了超循环论。其中心思想是在生命起源和发展中,从化学阶段到生物进化之间有一个分子的自组织过程。这个进化阶段的结果是形成了人们今日所见的具有统一遗传密码的细胞结构。这种遗传密码的形成有赖于超循环组织,这种组织具有“一旦建立就永远存在下去”的选择机制。总之,爱肯认为,“进化原理可理解为分子水平上的自组织”,以最终“从物质的已知性质来导出达尔文的原理”。(《控制论、信息论、系统科学与哲学》,中国人民大学出版社,1986年版,471页)

❷ 系统理论中最基本的观点是什么

整体性原则。即系统、要素和环境之间的辩证统一。首先,系统与要素、回要素与要素、系统与答环境之间存在着有机的联系,它们相互作用、相互影响,构成一个整体。其次,系统的性质和规律,只有从整体上才能显示出来,整体可以出现部分未有的新功能,整体功能不是各部分功能的简单相加。

❸ 系统理论中最基本的观点

作为一种崭新的综合性理论,系
统论的基本原则一般包括以下几个方面。(1)整体性
原则。即系统、要素和环境之间的辩证统一。首先,系统与
要素、要素与要素、系统与环境之间存在着有机的联系,
它们相互作用、相互影响,构成一个整体。其次,系统的性
质和规律,只有从整体上才能显示出来,整体可以出现部
分未有的新功能,整体功能不是各部分功能的简单相加。
再次,系统内部各要素或部分的性质和行为,对其他要素
或部分的性质和行为有依赖性,并对整体的性质和行为
有影响。整体性原则是系统论的基本出发点,它要求人们
在认识和处理系统对象时,都要从整体着手进行综合考
察,以达到最佳效果。(2)结构功能的原则。即系统的结构
与功能的辩证统一。首先,结构是功能的基础,功能是结
构的属性;结构不同,一般说功能也不同,结构决定功能。
其次,同一结构可能有多种功能;结构不同,也可获得异
构同功。它要求人们在分析研究各种系统时,必须把握好
系统结构和功能的辩证发展规律。(3)相互联系的原则。
即系统的整体性是通过各要素问的物质和能量的相互交
换、转换及守恒的规律,还有信息的传递、交流等多种形
式加以实现的。研究系统整体性时,必须搞清系统内外部
物质、能量、信息的流动状态。(4)有序性原则。即系统都
是有序的、分层次的和开放的。一般都由低级有序状态向
高级有序状态发展。系统有序程度用熵度量。(5)目的性
原则。即在反馈机制的作用下,系统能保持内部的稳定以
及与环境的协调的一种特性。要掌握系统发展的趋向,必
须把握它的这种机制。(6)动态性原则。即现实系统都是
变化、发展的,应当在动态中协调系统各方面的关系,使
系统达到最优化。