⑴ 什么是云计算

云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。

云计算的基本原理是,通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统

这可是一种革命性的举措,打个比方,这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。
云计算的蓝图已经呼之欲出:在未来,只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。从这个角度而言,最终用户才是云计算的真正拥有者。

云计算的应用包含这样的一种思想,把力量联合起来,给其中的每一个成员使用。

从最根本的意义来说,云计算就是利用互联网上的软件和数据的能力。

对于云计算, 李开复(现任Google全球副总裁、中国区总裁)打了一个形象的比喻:钱庄。 最早人们只是把钱放在枕头底下,后来有了钱庄,很安全,不过兑现起来比较麻烦。现在发展到银行可以到任何一个网点取钱,甚至通过ATM,或者国外的渠道。就像用电不需要家家装备发电机,直接从电力公司购买一样。

“云计算”带来的就是这样一种变革——由谷歌、IBM这样的专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。
目前,PC依然是我们日常工作生活中的核心工具——我们用PC处理文档、存储资料,通过电子邮件或U盘与他人分享信息。如果PC硬盘坏了,我们会因为资料丢失而束手无策。
而在“云计算”时代,“云”会替我们做存储和计算的工作。“云”就是计算机群,每一群包括了几十万台、甚至上百万台计算机。“云”的好处还在于,其中的计算机可以随时更新,保证“云”长生不老。Google就有好几个这样的“云”,其他IT巨头,如微软、雅虎、亚马逊(Amazon)也有或正在建设这样的“云”。
届时,我们只需要一台能上网的电脑,不需关心存储或计算发生在哪朵“云”上,但一旦有需要,我们可以在任何地点用任何设备,如电脑、手机等,快速地计算和找到这些资料。我们再也不用担心资料丢失。
在3月17日的新闻发布会上,施密特做了一个形象的比喻。他说,“云计算”就仿佛银行的自动取款机(ATM),我们出门再也不用随身携带大量现钞,可以根据需要随时取用。
Google的工程师谷雪梅则认为,PC时代好比每个人要用电,都得自己购买发电机;而“云计算”时代,每个人不必拥有发电机,直接从大型发电厂买电就好。
“云计算”其实并不是一个新概念。据谷雪梅介绍,“云计算”之前,还有“网格计算”(Grid Computing)等等,理念都是关于计算机如何协同发挥作用。十多年前,她还在读研究生时,就知道这些概念,但问题是,这些概念从来没有很好地得到实现。
在谷雪梅加入Google以后,她发现这一类概念已经得到了实践。Google的技术,可以让几十万台计算机一起发挥作用,组成强大的数据中心。Google中国CEO李开复此前接受《财经》记者专访时说,Google真正的竞争力就在于有这些“云”,他们让Google有了无与伦比的存储和计算全球数据的能力。
Google在创立之初,并没有刻意地去追求“云计算”和“晶格计算”等概念。但作为一家搜索引擎,Google在客观上需要拥有这些“云”。实际上,雅虎的搜索同样用到了“云计算”。
云计算是一种新兴的共享基础架构的方法,它可以将巨大的系统池连接在一起以提供各种IT服务。很多因素推动了对这类环境的需求,其中包括连接设备、实时数据流、 SOA 的采用以及搜索、开放协作、社会网络和移动商务等这样的 Web 2.0 应用的急剧增长。另外,数字元器件性能的提升也使IT环境的规模大幅度提高,从而进一步加强了对一个由统一的云进行管理的需求。
云计算+always-On设备 被评为“25年来最具影响力的十大IT技术组合”

《纽约时报》:云计算到底指什么?

云计算的说法正在广为流行,Gartner高级分析师Ben Pring评价道:“它正在成为一个大众化的词语。”但是,问题是似乎每个人对于云计算的理解各不相同。作为一个对互联网的比喻,“云”是很容易理解的。但是一旦同“计算”联系起来,它的意义就扩展了,而且开始变得模糊起来。有些分析师和公司把云计算仅仅定义为计算的升级版——基本上就是互联网上提供的众多虚拟服务器。另外一些人把云计算定义的更加宽泛,他们认为用户在防火墙保护之外消费的任何事物都处于“云”之中。
云计算被人们关注是在人们考虑IT业到底需要什么之后,人们需要找到一种办法能够在不增加新的投资,新的人力和新的软件的情况下增加互联网的能力和容量。而云计算正好提供了这种可能。
现今云计算正处于一个起步的阶段,大大小小的公司提供着各式各样的云计算服务,从软件应用到网络存储再到邮件过滤。这些公司一部分是基础设备提供商,另一部分是像Salesforce.com之类的SAAS(软件即服务)提供商。现今主要实现的是基于互联网的个人服务,但是云计算的聚合和整合正在产生。
InfoWorld网站同数十家公司、分析家和IT用户讨论出了云计算的几大形式:
1.SAAS(软件即服务)
这种类型的云计算通过浏览器把程序传给成千上万的用户。在用户眼中看来,这样会省去在服务器和软件授权上的开支;从供应商角度来看,这样只需要维持一个程序就够了,这样能够减少成本。Salesforce.com是迄今为止这类服务最为出名的公司。SAAS在人力资源管理程序和ERP中比较常用。 Google Apps和Zoho Office也是类似的服务
2.实用计算(Utility Computing)
这个主意很早就有了,但是知道最近才在Amazon.com、Sun、IBM和其它提供存储服务和虚拟服务器的公司中新生。这种云计算是为IT行业创造虚拟的数据中心使得其能够把内存、I/O设备、存储和计算能力集中起来成为一个虚拟的资源池来为整个网络提供服务。
3.网络服务
同SAAS关系密切,网络服务提供者们能够提供API让开发者能够开发更多基于互联网的应用,而不是提供单机程序。
4.平台即服务
另一种SAAS,这种形式的云计算把开发环境作为一种服务来提供。你可以使用中间商的设备来开发自己的程序并通过互联网和其服务器传到用户手中。
5.MSP(管理服务提供商)
最古老的云计算运用之一。这种应用更多的是面向IT行业而不是终端用户,常用于邮件病毒扫描、程序监控等等。
6.商业服务平台
SAAS和MSP的混合应用,该类云计算为用户和提供商之间的互动提供了一个平台。比如用户个人开支管理系统,能够根据用户的设置来管理其开支并协调其订购的各种服务。
7.互联网整合
将互联网上提供类似服务的公司整合起来,以便用户能够更方便的比较和选择自己的服务供应商。

⑵ 什么是云计算什么是大数据二者有何联系

云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。

大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。

他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。

(2)聚云计算扩展阅读:

云计算常与网格计算、效用计算、自主计算相混淆。

网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;

效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;

自主计算:具有自我管理功能的计算机系统。

事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。

被普遍接受的云计算特点如下:

(1) 超大规模

“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。

(2) 虚拟化

云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。

(3) 高可靠性

“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。

(4) 通用性

云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。

(5) 高可扩展性

“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。

(6) 按需服务

“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。

大数据特征:

1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

2 种类(Variety):数据类型的多样性;

3 速度(Velocity):指获得数据的速度;

4 可变性(Variability):妨碍了处理和有效地管理数据的过程。

5 真实性(Veracity):数据的质量

6 复杂性(Complexity):数据量巨大,来源多渠道

7 价值(value):合理运用大数据,以低成本创造高价值

想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。